Within K stops 最短路径 Cheapest Flights Within K Stops
2018-09-19 22:34:28
问题描述:

问题求解:
本题是典型的最短路径的扩展题,可以使用Bellman Ford算法进行求解,需要注意的是在Bellman Ford算法的时候需要额外申请一个数组来保存变量。
int inf = (int)1e9;
public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
// write your code here
int[] dist = new int[n];
Arrays.fill(dist, inf);
dist[src] = 0;
for (int i = 0; i <= K; i++) {
int[] prev = Arrays.copyOf(dist, n);
for (int[] e : flights) {
int from = e[0];
int to = e[1];
int w = e[2];
if (prev[to] > prev[from] + w) {
dist[to] = prev[from] + w;
}
}
}
return dist[dst] == inf ? -1 : dist[dst];
}
Within K stops 最短路径 Cheapest Flights Within K Stops的更多相关文章
- [Swift]LeetCode787. K 站中转内最便宜的航班 | Cheapest Flights Within K Stops
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- [LeetCode] Cheapest Flights Within K Stops K次转机内的最便宜的航班
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- [LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- 787. Cheapest Flights Within K Stops
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- LeetCode 787. Cheapest Flights Within K Stops
原题链接在这里:https://leetcode.com/problems/cheapest-flights-within-k-stops/ 题目: There are n cities connec ...
- 【LeetCode】787. Cheapest Flights Within K Stops 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:DFS 方法二:BFS 参考资料 日期 题目 ...
- [LeetCode] 787. Cheapest Flights Within K Stops_Medium tag: Dynamic Programming, BFS, Heap
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- K条最短路径算法(KSP, k-shortest pathes):Yen's Algorithm
参考: K最短路径算法之Yen's Algorithm Yen's algorithm 基于网络流量的SDN最短路径转发应用 K条最短路径算法:Yen's Algorithm 算法背景 K 最短路径问 ...
- 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除。
题目描述: 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除. 输入: 两个整数n(2<=n<=1000),a(2<=a<=1000) 输出: 一个整数. ...
随机推荐
- 01:adminLTE2基本使用
1.1 adminLTE介绍 1.adminLTE 介绍 1.基于Bootstrap3高度可定制的响应式管理模板,免去前端架构师大量的js和css的编写 2.adminLTE除了可以使用bootstr ...
- Codeforces 839C Journey - 树形动态规划 - 数学期望
There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can r ...
- poj 2942 Knights of the Round Table - Tarjan
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...
- 尚硅谷面试第一季-07Spring Bean的作用域之间有什么区别
目录结构: 关键性代码: beans.xml <!-- ★bean的作用域 可以通过scope属性来指定bean的作用域 -singleton:默认值.当IOC容器一创建就会创建bean的实例, ...
- 【Python025-字典】
一.字典 1.创建和访问字典(字典是大括号表示,字典是映射类型) 语法类型:键:key,值:value,用冒号隔开 --- >>> dict1 = {'李宁':'一切皆有可能','耐 ...
- 【做题】arc078_f-Mole and Abandoned Mine——状压dp
题意:给出一个\(n\)个结点的联通无向图,每条边都有边权.令删去一条边的费用为这条边的边权.求最小的费用以删去某些边使得结点\(1\)至结点\(n\)有且只有一条路径. \(n \leq 15\) ...
- LOJ#2452. 「POI2010」反对称 Antisymmetry
题目描述 对于一个 \(0/1\) 字符串,如果将这个字符串 \(0\) 和 \(1\) 取反后,再将整个串反过来和原串一样,就称作「反对称」字符串.比如 \(00001111\) 和 \(01010 ...
- 用C#.NET调用Java开发的WebService传递int,double问题,出现java无法获得值!
https://www.cnblogs.com/zhbsh/archive/2013/04/22/3035477.html 用C#.NET调用Java开发的WebService时,先在客户端封装的带有 ...
- Redis事件订阅和持久化存储
http://blog.csdn.net/yinwenjie/article/details/53518286 Redis从2.X版本开始,就支持一种基于非持久化消息的.使用发布/订阅模式实现的事件通 ...
- SQL语句总结2018-11-7
增加一条数据 insert into table (列字段1,列字段2)values(列1值,列2值) 删除一条数据 delete from table where 列名1=值1 修改一条数据 upd ...