poj2184 Cow Exhibition【01背包】+【负数处理】+(求两个变量的和最大)
题目链接:https://vjudge.net/contest/103424#problem/G
题目大意:
给出N头牛,每头牛都有智力值和幽默感,然后,这个题目最奇葩的地方是,它们居然可以是负数!!现在叫你求出其中的牛中,智力值总数和幽默感总数加起来最大的值,当然,智力值的总数必须大于等于零,幽默感总数也是。
解题思路:
转载于>>>大牛博客
对于每头牛,我们有两种选择,要么选,要么不选。看到这,就会觉得跟01背包很像,但是有 2 个变量来描述此状态的特征,智力,幽默感,并且他们可能是负数的。
如果此题选择dp来解,我们要想办法把它转换成01背包。
下面转换01背包的方法。
首先,下面的模板是 一维数组解背包问题 。
dp[i] = max(dp[i],dp[i-w[i]]+v[i])
首先,针对2个变量,智力,幽默感,我们定义i是前i头牛的智力总和,dp[i]存储的是此时智力总和为i时,幽默感总数的最大值。有人或许会问,题目叫我们求智力和幽默感的总数最大值啊,这dp最后得出的只是幽默感总数的最大值啊?没关系,求出整个dp后,将每个d[i] 和 i相加 看谁大就行了,别忘了,i就是智力总和。
这一步是锁定变量。
开始下一步前,我们先来定义一下dp数组的大小吧。
最多有100头牛,每个牛的智力范围在 -1000 – 1000 之间,
那他们的总和就是 落在 -1000*100 – 100*1000这个区间了里,也就是我们的dp要开100*1000*2这么大了。然后模仿坐标系,在100*1000*2这些数里找一个原点,自然的,这个是对称的,很明显远点是100*1000也就是100000了。大于100000的,智力总和大于0,小于100000,智力总和小于0.
当然,这么大的数组我们不可能每个都访问到,这就要做个标记了,既然这里是求最大值,我们就把数组初始化为一个非常小的整数,inf = -100000000.
好了,接下来是关键的负数的处理了。负数的处理很明显和正数不同,但他们都是dp,只不过,处理方式发生了变化。
s[i] 第i头牛的智力
f[i]第i头牛的幽默感
for i : to N //表示第几头牛
if(智力是负数){
//处理
}
else if(智力是正数或者0){
//处理
}
先是,正数,每头牛有选与不选,仿照01背包
for(int v = **;v>=s[i];v--)
if(dp[v-s[i]]>inf)
dp[v] = max(dp[v],dp[v-s[i]]+f[i])
如果知道01背包的优化,上面就很简单了,逆序循环,保证每一个状态都能访问到上一个状态。
v = ;
dp [] = max(dp[],dp[-s[i]]+f[i])
s[i] > 0,5-s[i]很明显是小于 5的,此时,dp[5-s[i]]保存的还是上一个状态的值,所以我们可以放心大胆的用。
然后是判断条件,dp[v-s[i]]>inf,记得一开始我们把表示智力值总和的数组的初始化为inf吗?如果,dp[v-s[i]]<=inf,这意味着没有这个智力值没有用到,也就是dp[v] 这个是没有dp[v-s[i]]这个状态,既然没有我们就无视。
来看负数的
for(int v = s[i];v<**;v++)
if(dp[v-s[i]]>inf)
dp[v] = max(dp[v],dp[v-s[i]]+f[i])
仔细看会发现,其实就循环条件不同,为什么这样既可以呢?
其实,可以参考01背包的空间优化和完全背包的空间优化。
不管是正数还是负数,我们都推,dp[v]时都要保证,它是由上一个状态的得来的。对于正数而言,上一个状态的智力总和是比当前状态小的。相反,对于负数而言,上一个状态的智力总和是比当前状态大的,s[i] < 0,v-s[i] > v,如果我们还是逆序循环的话,推dp[v]时,比他大的d[v-s[i]]早就改变了,不是上一个状态,那我们的递推就出现问题了,针对这个问题,我们正向循环就可以了。
最后,dp完后
来一个循环
ans = ;
for i:* to ** 智力总和要正数嘛
if(dp[i]>=)
ans = max(ans,i - * + dp[i]);
i-100*1000就等于此时的智力值总和了,因为我们让数组发生偏移了。
AC代码如下:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int dp[];
const int inf = << ; int main()
{
int n, s[], f[], i, j, ans;
while (~scanf("%d", &n))
{
for (i = ; i <= ; i++)
dp[i] = -inf;
dp[] = ;
for (i = ; i <= n; i++)
scanf("%d%d", &s[i], &f[i]);
for (i = ; i <= n; i++)
{
if (s[i]< && f[i]<)
continue;
if (s[i]>)
{
for (j = ; j >= s[i]; j--)//如果s[i]为正数,那么我们就从大的往小的方向进行背包
if (dp[j - s[i]]>-inf)
dp[j] = max(dp[j], dp[j - s[i]] + f[i]);
}
else
{
for (j = s[i]; j <= + s[i]; j++)//为负数则需要反过来
if (dp[j - s[i]]>-inf)
dp[j] = max(dp[j], dp[j - s[i]] + f[i]);
}
}
ans = -inf;
for (i = ; i <= ; i++)//因为区间100000~200000才是表示的整数,那么此时的i就是之前背包中的s[i],如果此时dp[i]也就
//是f[i]大于等于0的话,我们再加上s[i](此时为i),然后减去作为界限的100000,就可以得到答案
{
if (dp[i] >= )
ans = max(ans, dp[i] + i - );
}
printf("%d\n", ans);
}
return ;
}
2018-04-30
poj2184 Cow Exhibition【01背包】+【负数处理】+(求两个变量的和最大)的更多相关文章
- POJ-2184 Cow Exhibition(01背包变形)
Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10949 Accepted: 4344 Descr ...
- [POJ 2184]--Cow Exhibition(0-1背包变形)
题目链接:http://poj.org/problem?id=2184 Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2184 Cow Exhibition (01背包变形)(或者搜索)
Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10342 Accepted: 4048 D ...
- POJ 2184 Cow Exhibition 01背包
题意就是给出n对数 每对xi, yi 的值范围是-1000到1000 然后让你从中取若干对 使得sum(x[k]+y[k]) 最大并且非负 且 sum(x[k]) >= 0 sum(y[k] ...
- POJ 2184 Cow Exhibition (01背包的变形)
本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...
- PKU 2184 Cow Exhibition 01背包
题意: 有一些牛,每头牛有一个Si值,一个Fi值,选出一些牛,使得max( sum(Si+Fi) ) 并且 sum(Si)>=0, sum(Fi)>=0 思路: 随便选一维做容量(比如Fi ...
- POJ 2184 Cow Exhibition【01背包+负数(经典)】
POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...
- poj2184 Cow Exhibition(p-01背包的灵活运用)
转载请注明出处:http://blog.csdn.net/u012860063 题目链接:id=2184">http://poj.org/problem?id=2184 Descrip ...
- POJ2184 Cow Exhibition 背包
题目大意:已知c[i]...c[n]及f[i]...f[n],现要选出一些i,使得当sum{c[i]}和sum{f[i]}均非负时,sum(c[i]+f[i])的最大值. 以sum(c[i])(c[i ...
随机推荐
- SVN备份还原
本文是对SVN备份还原的一个简单记录 /*千万不能用VisualSVN Server PowerShell,否则在还原Load的时候会发生错误E140001,具体参考http://stackoverf ...
- Informatic学习总结_day02_增量抽取
SELECT EMP.EMPNO, EMP.ENAME, EMP.JOB, EMP.MGR, EMP.HIREDATE, EMP.SAL, EMP.COMM, EMP.DEPTNO FROM EMP ...
- 矩阵的SVD分解
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都 ...
- 【比赛游记】FJOI2019瞎打记
\(\mathrm{day}\) \(-4\) 又是睡到中午才起来,这样下去省选会睡迟的. 然后下午在补 WF2019 的题目,很快就能补完的(大雾). \(\mathrm{day}\) \(-3\) ...
- NandFlash和iNand
nand 1.nand的单元组织:block与page(大页Nand与小页Nand)(1)Nand的页和以前讲过的块设备(尤其是硬盘)的扇区是类似的.扇区最早在磁盘中是512字节,后来也有些高级硬盘扇 ...
- html5学习第一天
1.语义标签解决方案 <video></video> 属性: controls 显示控制栏 autoplay 自动播放 loop 设置循环播放 多媒体标签在网页中的兼容效果方 ...
- java开发之——[接口回调]
一.回调的含义和用途 1. 什么是回调? 一般来说,模块之间都存在一定的调用关系,从调用方式上看,可以分为三类:同步调用.异步调用和回调.同步调用是一种阻塞式调用,即在函数A的函数体里通过书写函数B的 ...
- LeetCode(54):螺旋矩阵
Medium! 题目描述: 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], [ 4, 5, ...
- python 全栈开发,Day89(sorted面试题,Pycharm配置支持vue语法,Vue基础语法,小清单练习)
一.sorted面试题 面试题: [11, 33, 4, 2, 11, 4, 9, 2] 去重并保持原来的顺序 答案1: list1 = [11, 33, 4, 2, 11, 4, 9, 2] ret ...
- 在django中使用FormView,success_url死活不能生效的问题
真的不知道是怎么回事, 以前都是手动的, form使用modelform. view使用createview. 今天写新系统时,为了更灵活. form使用form,(这样一来,可以在form是随便按数 ...