【题解】P4137 Rmq Problem(莫队)

其实这道题根本就不用离散化!

因为显然有\(mex\)值是\(\le 2\times 10^5\)的,所以对于大于\(2\times 10^5\)的数我们可以忽略。

然后直接莫队算就是的,开一个\(2e5\)的桶

  • 若一个比答案小的值的桶为\(0\)了:答案更新为它
  • 若这个\(mex\)的桶突然有值了:暴力枚举答案变大,第一个桶里没值的就是答案,更新。

有小伙伴会问,这复杂度不上天了?其实不然。移动\(ans\)的总复杂度(好像)是\(O(n\sqrt n)\)的,因为:

  • 当区间长度增大时,\(ans\)的移动是均摊\(O(\text{区间长度})\)的(最坏情况(好像)是加进来的数就变成了一个递增序列)。

  • 当区间减小时,\(ans\)是直接更新的。所以\(ans\)指针的移动和\(L,R\)指针的移动次数是同级的。

由于莫队中,区间减小增大不是交替的(不存在\(L\)动一次交替然后\(R\)动一次)(都是一个动完再动另外一个),所以最终复杂度\(O(n\sqrt n)\),实际上(貌似)吊打\(O(n \log n)\)

//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath> using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
} const int maxn=2e5+5;
int be[maxn];
int data[maxn];
int s[maxn];
int n,N,ans,m;
struct Q{
int l,r,id;
Q(){l=r=id=0;}
Q(const int&a,const int&b,const int&c){l=a;r=b;id=c;}
inline bool operator <(const Q&a)const{return be[l]==be[a.l]?(be[l]&1?r<a.r:r>a.r):(l<a.l);}
}q[maxn]; inline void add(const int&pos,const int&tag){
if(data[pos]>maxn) return;
s[data[pos]]+=tag;
const int k=s[data[pos]];
if(k==0&&ans> data[pos]) ans=data[pos];
if(k==1&&ans==data[pos])
while(++ans) if(!s[ans]) return;
} int main(){
n=qr(),m=qr();
N=sqrt(n)+1;
for(register int t=1;t<=n;++t) be[t]=(t-1)/N+1;
for(register int t=1;t<=n;++t) data[t]=qr();
for(register int t=1,t1,t2;t<=m;++t) t1=qr(),t2=qr(),q[t]=Q(t1,t2,t);
sort(q+1,q+m+1);
register int L=1,R=0;
for(register int t=1;t<=m;++t){
while(L<q[t].l) add(L++,-1);
while(L>q[t].l) add(--L, 1);
while(R<q[t].r) add(++R, 1);
while(R>q[t].r) add(R--,-1);
be[q[t].id]=ans;
}
for(register int t=1;t<=m;++t) printf("%d\n",be[t]);
return 0;
}

【题解】P4137 Rmq Problem(莫队)的更多相关文章

  1. BZOJ 3339: Rmq Problem 莫队算法

    3339: Rmq Problem 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3339 Description n个数,m次询问l,r ...

  2. 【bzoj3585/bzoj3339】mex/Rmq Problem 莫队算法+分块

    原文地址:http://www.cnblogs.com/GXZlegend/p/6805283.html 题目描述 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没 ...

  3. P4137 Rmq Problem / mex (莫队)

    题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...

  4. 洛谷 P4137 Rmq Problem /mex 解题报告

    P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...

  5. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  6. 洛谷P4137 Rmq Problem / mex(莫队)

    题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...

  7. 洛谷 P4137 Rmq Problem/mex 题解

    题面 首先,由于本人太菜,不会莫队,所以先采用主席树的做法: 离散化是必须环节,否则动态开点线段数都救不了你: 我们对于每个元素i,插入到1~(i-1)的主席树中,第i颗线段树(权值线段树)对于一个区 ...

  8. hdu_5085_Counting problem(莫队分块思想)

    题目连接:hdu_5085_Counting problem 题意:给你一个计算公式,然后给你一个区间,问这个区间内满足条件的数有多少个 题解:由于这个公式比较特殊,具有可加性,我们考虑讲一个数分为两 ...

  9. P4137 Rmq Problem / mex

    目录 链接 思路 线段树 莫队 链接 https://www.luogu.org/problemnew/show/P4137 思路 做了好几次,每次都得想一会,再记录一下 可持久化权值线段树 区间出现 ...

随机推荐

  1. Flask学习之三 web表单

    本部分Miguel Grinberg教程的翻译地址:http://www.pythondoc.com/flask-mega-tutorial/webforms.html 开源中国的:http://ww ...

  2. oracle中的闪回

    项目中运用: 首先说明:闪回方法有一个前提,就是需要尽早的发现问题,果断的采取行动.若误操作的记录已经在UNDO表空间中被清除,则此方法就不可行了,需要另寻他法. 例如: SELECT * FROM ...

  3. linux内核分析笔记----中断和中断处理程序

    中断还是中断,我讲了很多次的中断了,今天还是要讲中断,为啥呢?因为在操作系统中,中断是必须要讲的.. 那么什么叫中断呢, 中断还是打断,这样一说你就不明白了.唉,中断还真是有点像打断.我们知道linu ...

  4. saltStack 状态模块(状态间的关系)

    unless onlyif:状态间的条件判断,主要用于cmd状态模块 常用方法:    onlyif:检查的命令,仅当'onlyif'  选项指向的命令返回true时才执行name 定义的命 unle ...

  5. uva 11754 Code Feat (中国剩余定理)

    UVA 11754 一道中国剩余定理加上搜索的题目.分两种情况来考虑,当组合总数比较大的时候,就选择枚举的方式,组合总数的时候比较小时就选择搜索然后用中国剩余定理求出得数. 代码如下: #includ ...

  6. 2018-10-15-Winforms-可能遇到的-1000-个问题

    title author date CreateTime categories Winforms 可能遇到的 1000 个问题 lindexi 2018-10-15 09:35:15 +0800 20 ...

  7. 请求(RequestInfo)

    请求类型 StringRequestInfo 用在 SuperSocket 命令行协议中. 你也可以根据你的应用程序的需要来定义你自己的请求类型. 例如, 如果所有请求都包含 DeviceID 信息, ...

  8. CODE FESTIVAL 2017 qual A D Four Coloring(补题)

    这题看了好几天才看懂,一直误解题解中的d * d了 题解中说把大的格子划分成d * d的方格,我划分的时候把格子当作点来算的,一直觉得那明明是(d-1) * (d-1),昨天刚反映过来 思路:把格子旋 ...

  9. phpstorm 里能做git的命令行操作吗?

    在VCS菜单下面有 GIT -> Branches 然后会弹出branch菜单,后面怎么操作应该不需要解释吧,所有的branch都列出来自己选 在Tools菜单下面有Open Terminal. ...

  10. [转]MySQL常用查询

    单表查询 ①查询所有     * mysql> select * from student; ②查询选中字段记录 mysql> select s_name from student; ③条 ...