洛谷P4137 Rmq Problem / mex(莫队)
题目描述
有一个长度为n的数组{a1,a2,…,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。
输入输出格式
输入格式:
第一行n,m。
第二行为n个数。
从第三行开始,每行一个询问l,r。
输出格式:
一行一个数,表示每个询问的答案。
输入输出样例
说明
对于30%的数据:1<=n,m<=1000
对于100%的数据:1<=n,m<=200000,0<=ai<=10^9,1<=l<=r<=n
题解
别看了我的莫队时间复杂度是$O(不能过)$的
然而数据太水……比方说$0<=ai<=10^9$,然而我记录出现次数的开了$200000$都能A
而且更新答案的时候分分钟卡到$O(n)$
于是懒得想正解了能过就行
//minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=;
int a[N],num[N],ans[N],rt[N],s,n,m,mn,l,r,k;
struct node{
int l,r,id;
inline bool operator <(const node b)const{
if(rt[l]!=rt[b.l]) return l<b.l;
return rt[l]&?r<b.r:r>b.r;
}
}q[N];
inline void add(int x){
++num[x];while(num[mn]) ++mn;
}
inline void del(int x){
--num[x];if(!num[x]) cmin(mn,x);
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read(),s=sqrt(n);
for(int i=;i<=n;++i) a[i]=read(),rt[i]=(i-)/s+;
for(int i=;i<=m;++i)
q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+,q++m);
l=,r=,mn=;
for(int i=;i<=m;++i){
while(l>q[i].l) add(a[--l]);
while(r<q[i].r) add(a[++r]);
while(l<q[i].l) del(a[l++]);
while(r>q[i].r) del(a[r--]);
ans[q[i].id]=mn;
}
for(int i=;i<=m;++i) print(ans[i]);
Ot();
return ;
}
洛谷P4137 Rmq Problem / mex(莫队)的更多相关文章
- P4137 Rmq Problem / mex (莫队)
题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...
- 洛谷 P4137 Rmq Problem /mex 解题报告
P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...
- 洛谷 P4137 Rmq Problem/mex 题解
题面 首先,由于本人太菜,不会莫队,所以先采用主席树的做法: 离散化是必须环节,否则动态开点线段数都救不了你: 我们对于每个元素i,插入到1~(i-1)的主席树中,第i颗线段树(权值线段树)对于一个区 ...
- 洛谷 P4137 Rmq Problem / mex
https://www.luogu.org/problemnew/show/P4137 只会log^2的带修主席树.. 看了题解,发现有高妙的一个log做法:权值线段树上,设数i对应的值ma[i]为数 ...
- BZOJ 3339 && luogu4137 Rmq Problem / mex(莫队)
P4137 Rmq Problem / mex 题目描述 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. ...
- 【luogu4137】 Rmq Problem / mex - 莫队
题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 思路 莫队水过去了 233 #include <bits/stdc++.h> ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- P4137 Rmq Problem / mex
目录 链接 思路 线段树 莫队 链接 https://www.luogu.org/problemnew/show/P4137 思路 做了好几次,每次都得想一会,再记录一下 可持久化权值线段树 区间出现 ...
- Bzoj2120/洛谷P1903 数颜色(莫队)
题面 Bzoj 洛谷 题解 考虑对操作离线后分块处理询问操作(莫队算法),将询问操作按照编号分块后左端点第一关键字,右端点第二关键字排序(分块大小为\(n^{\frac 23}\)),对于每一个询问操 ...
随机推荐
- C++字符集问题终极分析(可解决乱码问题)
最近研究vc,windows的东西真是很傻瓜,啥都给你做好,有个好处就是开发方便了. 有个弊端就是完全按微软的一套进行,规则都是它定的,你得知道它的很多api, 开发出来的代码效率不高,不过却可以比较 ...
- 开发环境无错,部署至测试环境报错“NoSuchMethodError”OR"NoSuchClassError"
背景: 实现一个简单的功能,需要用到jedis的jar包连接Redis.在之前便已经有使用jedis,它的版本比较旧,是2.1的.而新实现的功能,在编码的时候使用的是2.8的.在开发环境完成单元测试后 ...
- Redis 集群之 Redis-Cluster
Redis集群官方推荐方案 Redis-Cluster 集群 redis cluster 通过分片实࣫容量扩展 通过主从复制实࣫节点的高可用 节点之间互相通信 每个节点都维护整个集群的节点信息 red ...
- 触摸事件MultiTouch Events
备注: userInteractionEnabled = NO hidden = YES alpha = 0.0~0.01 //如果上面三个属性被设置了则无法接收触摸事件 1.- (void)t ...
- Eclipse中如何开启断言(Assert),方法有二
Eclipse中如何开启断言(Assert),方法有二:1.Run -> Run Configurations -> Arguments页签 -> VM arguments文本框中加 ...
- 【270】IDL处理GeoTIFF数据
参考:将原GeoTIFF数据的投影坐标信息赋值到新创建的文件上 pro tiff_projection ;启动ENVI e = ENVI(/HEADLESS) ;打开文件 file = 'D:\01- ...
- rm 删除文件或目录
rm命令可以删除一个目录中的一个或多个文件或目录,也可以将某个目录及其下属的所有文件及其子目录均删除掉.对于链接文件,只是删除整个链接文件,而原有文件保持不变. 注意:使用rm命令要格外小心.因为一旦 ...
- 线段树教做人系列(3) HDU 4913
题意及思路看这篇博客就行了,讲得很详细. 下面是我自己的理解: 如果只有2,没有3的话,做法就很简单了,只需要对数组排个序,然后从小到大枚举最大的那个数.那么它对答案的贡献为(假设这个数排序后的位置是 ...
- Python_pip_02_利用pip安装模块(以安装pyperclip为例)
>任务:利用pip安装pyperclip模块 >前提 你已经在你的电脑里面安装啦Python2.7的Windows版本,并且已经配置了环境变量 >实现步骤 >>打开你的P ...
- 杭电acm 1021题
题意是要求能被3整除的数所以为了避免大数据的产生,直接对每个数据求余,然后相加 #include "iostream" using namespace std; int main( ...