正解:$dp$

解题报告:

传送门$QwQ$

考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选.

于是就是个状压$dp$板子了$QwQ$

然后因为有些数是无关联的就不会在一个表格中($eg:1,5$.所以要建多个表格,最后乘法原理就好,$over$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define ri register int
#define rb register bool
#define rc register char
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i) const int N=+,mod=;
int n,as=,cnt,num[],f[][N];//说下昂QwQ,就这里这个[N]不是原本的N的意义,,,只是恰好等于N.QwQ
bool vis[N];
vector<int>V[]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void build(ri x)
{cnt=;while(x<=n){ri tmp=x;num[++cnt]=;while(tmp<=n)++num[cnt],vis[tmp]=,tmp<<=;x=1ll*x*;}}
il bool check(ri x){ri pre=;while(x){ri tmp=lowbit(x);if(tmp==(pre<<))return ;pre=tmp;x-=pre;}return ;}
il void pre(){rp(i,,cnt){V[i].clear();rp(j,,(<<num[i])-)if(check(j))V[i].push_back(j);}}
il void inc(ri &x,ri y){x+=y;if(x>=mod)x-=mod;}
il int cal()
{
pre();ri ret=;
rp(i,,cnt){ri sz=V[i].size();rp(j,,sz-)f[i][j]=(i==);}
rp(i,,cnt)
{
ri sznw=V[i].size(),szpr=V[i-].size();
rp(j,,sznw-){rp(k,,szpr-)if(!(V[i][j]&V[i-][k]))inc(f[i][j],f[i-][k]);if(i==cnt)inc(ret,f[i][j]);}
}
if(cnt==)ret=V[].size();
return ret;
} int main()
{
//freopen("3226.in","r",stdin);freopen("3226.out","w",stdout);
n=read();rp(i,,n)if(!vis[i]){build(i);as=1ll*as*cal()%mod;}printf("%d\n",as);
return ;
}

洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$的更多相关文章

  1. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  2. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  3. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  4. 【BZOJ-2732】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  5. 【BZOJ-2734】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  6. BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】

    [题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...

  7. P3226 [HNOI2012]集合选数

    考虑构造矩阵 1 3 9 27...... 2 6 18 54...... 4 12 36 108...... ...... 发现在这个矩阵上一个合法的集合是一个满足选择的数字不相邻的集合,由于行数列 ...

  8. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  9. luogu P3226 [HNOI2012]集合选数

    luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...

随机推荐

  1. @atcoder - AGC034E@ Complete Compress

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 N 个点的树,编号为 1, 2, ..., N.第 i ...

  2. [Pytorch]基于混和精度的模型加速

    这篇博客是在pytorch中基于apex使用混合精度加速的一个偏工程的描述,原理层面的解释并不是这篇博客的目的,不过在参考部分提供了非常有价值的资料,可以进一步研究. 一个关键原则:“仅仅在权重更新的 ...

  3. 2018年NOIP普及组复赛题解

    题目涉及算法: 标题统计:字符串入门题: 龙虎斗:数学题: 摆渡车:动态规划: 对称二叉树:搜索. 标题统计 题目链接:https://www.luogu.org/problem/P5015 这道题目 ...

  4. css 文字超出部分隐藏

    未做隐藏处理 执行结果: 1.1行超出部分省略号 效果: 2.多行超出部分隐藏(目前只能在chrome浏览器中使用,其他浏览器不兼容) 效果: -webkit-line-clamp 属性定义显示行数可 ...

  5. LightOJ 1123 Trail Maintenance

    题意:n个城市m天.每一天修一条道路,输出当前天数的最小生成树,但是这里有一个条件,就是说最小生成树必须包括全部n个城市,否则输出-1 思路:边数有6000如果每一天跑一次最小生成树的话就接近O(m^ ...

  6. ThinkPHP商城实战

    ThinkPHP3.2.3商城实战教程,需要的联系我,QQ:1844912514 千万级php电商秒杀项目实战  ,需要的联系我,QQ:1844912514

  7. CSS画矩形、圆、半圆、弧形、半圆、小三角、疑问框

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. oracle中 =: 和 := 分别是什么意思

    oracle中 =: 和 := 分别是什么意思 =:应该相当于 a = :b 表明b是个绑定变量,需要执行时进行变量绑定:= 相当于一般编程语言中的 赋值 a := 1 即将 数字1赋值给变量 a

  9. BiLSTM-CRF学习笔记(原理和理解) 维特比

    BiLSTM-CRF 被提出用于NER或者词性标注,效果比单纯的CRF或者lstm或者bilstm效果都要好. 根据pytorch官方指南(https://pytorch.org/tutorials/ ...

  10. Python--day41--线程队列

    1,普通队列:queue.Queue(),先进先出 import queue q = queue.Queue() #队列 先进先出 q.put(1) q.put(2) q.put(3) q.put(4 ...