AlexNet模型
AlexNet模型
《ImageNet Classification with Deep Convolutional Neural Networks》阅读笔记
一直在使用AlexNet,本来早应该读这篇经典论文了。可能是这篇论文涉及到的理论有点多,解释不是很通俗,有了一段时间的实际经验后读完这篇论文深有感悟。
下面按论文的标题分别记录:
The Dataset
ILSVRC:1000类,每类约1000张图片,大约有120w训练图片,5w张验证图片,15w张测试图片。
AlexNet输入为固定尺寸:256*256,从原始图片进行resize and crop得到。唯一一个预处理是所有图像在进入网络时减去整体均值。
ReLU Nonlinearity
ReLU是一种不饱和非线性函数,相对传统的饱和非线性函数具 有更快的收敛速度,可以加速拟合训练集。Jarrettet用ReLU来阻止过拟合。
Training on Multiple GPUs
使用多个两个GPU是为了解决单个GPU内存限制了网络大小,将 原网络拆成两半,比如说第一层卷积应该输出55×55×96,现拆成两个55×55×48。这里GPU只 在某些层进行互相通信。
Local Response Normalization
论文中提出的LRN属于CROSS_CHANNEL的,作用是模拟生物神经 上的侧抑制( lateral inhibition,或者叫邻近抑制),使相邻神经元的激活值之间产生竞争。因为每个神经元的激活值需要除以相邻神经元的激活值的平方和,因此如果相邻神经元含有较大激活值的话,本身LRN后的激活值 就变小了。
Reducing Overfitting
论文介绍了两种防止过拟合的方法:
1.Data Augmentation
Data Augmentation是通过少量的计算从原始图片变换得到新的训练数据。第一种是随机裁剪,原图256×256,裁剪大小为224×224,由于随机,所以每个epoch中对同一张图片进行了不同的裁剪,理论上相当于扩大数据集32×32×2=2048倍!32是256-224;2是由于水平翻转。
在预测(deploy)阶段,不是随机裁剪,而是固定为图片四个边角,外加中心位置。翻转后进行同样操作,共产生10个patch。
2.Dropout
Dropout是借鉴了多个模型结合的想法,对于一个分类问题,如果有多个训练完备的不同的模型,同时对一个输入做出预测,然后少数服从多数,显然会减小错误率。实际的做法是:每个隐层神经元的输出有0.5的概率置为0,置为0的神经元就不 会参加前向传播和反向更新。这样做的好处是有效防止过拟合,但是缺点是网络收敛需要的迭代次数增加一倍。
Details of learning
batch size=128
momentum=0.9
weight decay=0.0005
initial learining rate=0.01 reduce three times(factor :10)
iter epoch=90
- 1
- 2
- 3
- 4
- 5
The update rule for weight w was
<∂L∂W|wi>Di<∂L∂W|wi>Di为参数对应的梯度,ϵϵ为学习速率。
AlexNet模型的更多相关文章
- AlexNet模型的解析及tensorflow实现
AlexNet是ImageNet LSVRC 2012比赛中分类效果第一的深度神经网络模型,点击链接下载论文http://papers.nips.cc/paper/4824-imagenet-clas ...
- 基于Caffe训练AlexNet模型
数据集 1.准备数据集 1)下载训练和验证图片 ImageNet官网地址:http://www.image-net.org/signup.php?next=download-images (需用邮箱注 ...
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
- Ubuntu下caffe:用自己的图片训练并测试AlexNet模型
参考博客:https://blog.csdn.net/eereere/article/details/79118645#commentBox 目录 1.准备图片 2. 将 图片路径写入txt 参考 这 ...
- 大话CNN经典模型:AlexNet
2012年,Alex Krizhevsky.Ilya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LS ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...
- TensorFlow实战之实现AlexNet经典卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...
- 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现 ...
随机推荐
- Linux的s、t、i、a权限(转)
原文链接:http://blog.chinaunix.net/uid-712656-id-2678715.html 文件权限除了r.w.x外还有s.t.i.a权限: s:文件属主和组设置SUID和GU ...
- CSIC_716_20191126【面向对象编程--继承】
继承 什么是继承:继承是新建类的一种方式,通过此方式生成的类称为子类.或者 派生类,被继承的类称为父类.基类或超类.在python中,一个子类可以继承多个父类. 继承的作用:减少代码的冗余,提高开发效 ...
- CI的session操作
在使用session之前,要对配置文件config.php 里面的$config['encryption_key']随便赋个值,例如1234 1. 首先要加载session类,固定写法:$this-& ...
- 阿里云宣布 Serverless 容器服务 弹性容器实例 ECI 正式商业化
摘要: 阿里云宣布弹性容器实例 ECI(Elastic Container Instance)正式商业化,ECI 是阿里云践行普惠的云计算理念,将 Serverless 和 Container 技术结 ...
- Delphi 实现窗体无标题栏有边框
1.在窗体的public区写下这一句: Procedure CreateParams(var Params :TCreateParams);override;2然后把光标停在这一行上,按下Ctrl+S ...
- 模块化开发(requireJS)
模块化 在前端使用模块化开发,可以将代码根据功能实施模块的划分,每个模块功能(职责)单一,在需要更改对应的功能的时候,只需要对指定的模块进行修改,其他模块不受任何影响. 为什么要进行前端模块化? 达到 ...
- servlet的抽取
servlet的抽取 servlet按照模块来划分,比如注册和登录的servlet就放到user的servlet中 原来: 登录时登录的servlet 注册时注册的servlet 现在: 登录注册的s ...
- Spring MVC(十四)--SpringMVC验证表单
在Spring MVC中提供了验证器可以进行服务端校验,所有的验证都必须先注册校验器,不过校验器也是Spring MVC自动加载的,在使用Spring MVC校验器之前首先要下载相关的jar包,下面是 ...
- Git远程仓库版本回退
1.首先将本地仓库版本回退到自己想要的版本. git reset commit_id 2.将回退后的版本强制推送到远程仓库. git push -f origin master
- java笔试之自守数
自守数是指一个数的平方的尾数等于该数自身的自然数.例如:25^2 = 625,76^2 = 5776,9376^2 = 87909376.请求出n以内的自守数的个数 接口说明 /*功能: 求出n以内的 ...