分析:给定N头牛,每头牛都有各自的Si和Fi
从这N头牛选出一定的数目,使得这些牛的
Si和Fi之和TS和TF都有TS>=0 FS>=0并TS+FS

达到最大值。
这是一个背包问题。可以将Si和Fi一个当作是
背包容量,另一个当作是价值。 
但是-1000<=Si<=1000出现了负值,采用的处理方式
一共100组数,从-1000到1000,那么体积的范围就是-100*1000到100*1000。
平移之后我们要处理的数据范围就在0到200000,新的原点变成100000。

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

const int INF=0X3F3F3F3F;

int N,s[110],f[110],dp[200010];
int n;

int ZeroOnePack()
{
  memset(dp,-INF,sizeof(dp));
  dp[100000]=0;

  for(int i=1;i<=N;i++)
  {
    if(s[i]>0)
    {
      for(int j=200000;j>=s[i];j--)
        dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
    }
    else
    {
      for(int j=0;j-s[i]<=200000;j++)
        dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
    }
  }

  int ans=-INF;
  for(int j=100000;j<=200000;j++)
    if(dp[j]>=0)  //这个判断重要
      ans=max(ans,dp[j]+j-100000);

  return ans;
}

int main()
{
  while (scanf("%d",&N)!=EOF)
  {
    n=0;
    for(int i=1;i<=N;i++)
       scanf("%d%d",&s[i],&f[i]);

    printf("%d\n",ZeroOnePack());
  }
  return 0;
}

PKU--2184 Cow Exhibition (01背包)的更多相关文章

  1. PKU 2184 Cow Exhibition 01背包

    题意: 有一些牛,每头牛有一个Si值,一个Fi值,选出一些牛,使得max( sum(Si+Fi) ) 并且 sum(Si)>=0, sum(Fi)>=0 思路: 随便选一维做容量(比如Fi ...

  2. [POJ 2184]--Cow Exhibition(0-1背包变形)

    题目链接:http://poj.org/problem?id=2184 Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. POJ 2184 Cow Exhibition (01背包变形)(或者搜索)

    Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10342   Accepted: 4048 D ...

  4. POJ 2184 Cow Exhibition (01背包的变形)

    本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...

  5. POJ 2184 Cow Exhibition 01背包

    题意就是给出n对数 每对xi, yi 的值范围是-1000到1000 然后让你从中取若干对 使得sum(x[k]+y[k]) 最大并且非负   且 sum(x[k]) >= 0 sum(y[k] ...

  6. POJ-2184 Cow Exhibition(01背包变形)

    Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10949 Accepted: 4344 Descr ...

  7. poj 2184 Cow Exhibition(背包变形)

    这道题目和抢银行那个题目有点儿像,同样涉及到包和物品的转换. 我们将奶牛的两种属性中的一种当作价值,另一种当作花费.把总的价值当作包.然后对于每一头奶牛进行一次01背包的筛选操作就行了. 需要特别注意 ...

  8. POJ 2184 Cow Exhibition(背包)

    希望Total Smart和Totol Funess都尽量大,两者之间的关系是鱼和熊掌.这种矛盾和背包的容量和价值相似. dp[第i只牛][j = 当前TotS] = 最大的TotF. dp[i][j ...

  9. POJ 2184 Cow Exhibition【01背包+负数(经典)】

    POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...

  10. poj 2184 Cow Exhibition(dp之01背包变形)

    Description "Fat and docile, big and dumb, they look so stupid, they aren't much fun..." - ...

随机推荐

  1. Hive HA基本原理

  2. vc枚举本机端口信息

    关于查看本机端口信息,可能大多数人都知道在cmd下的netstat 命令,殊不知该命令在底层也是调用相关api来实现的,相关函数有:GetTcpTableGetExtendedTcpTableGetU ...

  3. delphi 还原窗口

    1.格局还原procedure TFrmStyleProp.btnNewClick(Sender: TObject); //声明var iniFile : TIniFile; idx : intege ...

  4. Android系统开发 编译系统签名的APP

    前言 一般情况下,我们使用的签名都是自己生成的Java签名来编译APP. 但是,如果需要开发一些特定设备的APP(对权限有更高的要求,需求一些系统基本的权限,比如让APP可以控制设备的休眠),那就需要 ...

  5. thinkphp 前置和后置操作

    前置和后置操作指的是在执行某个操作方法之前和之后会自动调用的方法,不过仅对访问控制器有效. 其他的分层控制器层和内部调用控制器的情况下前置和后置操作是无效的. 系统会检测当前操作是否具有前置和后置操作 ...

  6. 获取硬件信息的delphi源码CPUID、操作系统、Mac物理地址、计算机名称、IP地址、用户名

    {-----------------------------------------------------------------------------作者:sushengmiyan 2013.0 ...

  7. hdu多校第二场1009 (hdu6599) I Love Palindrome String 回文自动机/字符串hash

    题意: 找出这样的回文子串的个数:它本身是一个回文串,它的前一半也是一个回文串 输出格式要求输出l个数字,分别代表长度为1~l的这样的回文串的个数 题解: (回文自动机和回文树是一个东西) 首先用回文 ...

  8. Big Number HDU - 1212

    As we know, Big Number is always troublesome. But it's really important in our ACM. And today, your ...

  9. 02_mybatis开发dao的方法

    MyBatis开发dao的方法 1. SqlSession使用范围 1.1 SqlSessionFactoryBuilder ​ 通过SqlSessionFactoryBuilder创建会话工厂Sql ...

  10. InfluxDB的安装和简介

    InfluxDB简介 InfluxDB是一个时间序列数据库,旨在处理高写入和查询负载.它是TICK堆栈的组成部分 .InfluxDB旨在用作涉及大量带时间戳数据的任何用例的后备存储,包括DevOps监 ...