2020Nowcode多校 Round5 C. Easy
C. Easy
构造两个序列分别要满足 \(\sum_{i=1}^{k} a_{i} = N\) \(\sum_{i=1}^{k} b_{i} = M\)
一种方案能贡献\(\prod_{i=1}^{k} min(a_{i}, b_{i})\) 的分数 求所有方案分数的和
生成函数
对于一个序列 \(a_{0},a_{1},a_{2}\)···
定义它的生成函数为 \(G(x) = a_{0} + a_{1}x + a_{2}x^{2}\)···
生成函数有指数和系数两维信息 所以用来解决计数问题非常强大 因此生成函数的构造是比较关键的
在本题中一个序列不同的方案数 其实就是就把N划分成K个数的方案数
对于每一个数我们可以用一个生成函数\(G(x) = x+x^{2}+x^{3}\)···来表示
它的意义是 每一项其实就是一种操作 比如\(x^{2}\)表示让这一位为2(指数)的方案数为1(系数)
那么把N划分成K个数的方案数就是 \((G(x))^{k} = (x + x^{2}+x^{3}···)^{k}\) 中\(x^{N}\)的系数
如果想维护出一个序列所有方案分数的和 我们可以巧妙的构造 \((G(x))^{k} = (x + 2x^{2}+3x^{3}···)^{k}\)
它的意义是 比如\(2x^{2}\)表示让这一位为2(指数)能让这一种方案的分数\(*2\)(系数)
min的生成函数
容易想到 对于两个数我们可以构造一个生成函数\(G(x,y) = (x + x^{2} + x^{3}···)(y+y^{2}+y^{3}···)\) 用\(x^{i}y^{j}\)来表示第一个数为i 第二个数为j
我们只用了它的指数 显然还有系数可以用来维护信息 能不能用一种构造使得它的系数为\(min(i,j)\)呢
先上结论 我们可以在\(G(x,y)\)后乘上一个\(1+xy+x^{2}y^{2}\)···
理解一下 假设\(i<j\) 它实际上是提供了一个映射 让原来的\(x^{i}y^{j},x^{i-1}y^{j-1},x^{i-2}y^{j-2}···x^{1}y^{j-i+1}\)一共\(i\)项都为\(x^{i}y^{j}\)的系数做了一次贡献
所以在这个多项式里\(x^{i}y^{j}\)的系数恰好为\(min(i,j)\)
题解
综上所述 答案为\(G(x,y) = (x + x^{2} + x^{3}···)^{k}(y+y^{2}+y^{3}···)^{k}(1+xy+x^{2}y^{2}···)^{k}\)这个多项式中\(x^{N}y^{M}\)的系数
我们可以枚举最后一项中\(x^{i}y^{i}\)的指数 就可以得到第一个项中\(x\)的指数为\(N-i\) 第二项\(y\)的指数为\(M-i\)
然后分别计算它们的系数 最后一项是把i个物品分为K个可以为空的集合 前两项分别是把\(N-i\)和\(M-i\)个物品分为K个非空集合
\(ans = \sum_{0}^{min(N-K,M-K)} \binom{N-i-1}{K-1} \binom{M-i-1}{K-1} \binom{i+K-1}{i}\)
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int mod = 998244353;
const int MAXN = 1000005;
int n, m, k;
int fac[MAXN];
int ny[MAXN];
int inv[MAXN];
int C(int x, int y) {
if(x < y || y < 0 || x < 0) return 0;
return 1LL * fac[x] * inv[x - y] % mod * inv[y] % mod;
}
int main() {
fac[0] = ny[0] = inv[0] = 1; ny[1] = 1;
for(int i = 1; i <= 1000000; i++) {
fac[i] = 1LL * i * fac[i - 1] % mod;
if(i > 1) ny[i] = 1LL * ny[mod % i] * (mod - mod / i) % mod;
inv[i] = 1LL * ny[i] * inv[i - 1] % mod;
}
int T;
cin>>T;
while(T--) {
scanf("%d%d%d", &n, &m, &k);
int ans = 0;
for(int i = 0; i <= min(n, m) - k; i++) {
int tmp = 1LL * C(k + i - 1, i) * C(n - i - 1, k - 1) % mod * C(m - i - 1, k - 1) % mod;
ans = (ans + tmp) % mod;
}
printf("%d\n", ans);
}
return 0;
}
2020Nowcode多校 Round5 C. Easy的更多相关文章
- 2017多校Round5(hdu6085~hdu6095)
补题进度:7/11 1001(模意义下的卷积) 题意: 给出长度<=50000的两个数组A[] B[],保证数组中的值<=50000且A[]中数字两两不同,B[]中数字两两不同 有5000 ...
- 2020Nowcode多校 Round9 B.Groundhog and Apple Tree
题意 给一棵树 初始\(hp=0\) 经过一条边会掉血\(w_{i}\) 第一次到达一个点可以回血\(a_{i}\) 在一个点休息\(1s\)可以回复\(1hp\) 血不能小于\(0\) 每条边最多经 ...
- 2019牛客多校 Round5
Solved:4 Rank:122 补题:8/10 A digits 2 签到 把这个数写n遍 #include <bits/stdc++.h> using namespace std; ...
- 2016弱校联盟十一专场10.5---As Easy As Possible(倍增)
题目链接 https://acm.bnu.edu.cn/v3/contest_show.php?cid=8506#problem/A problem description As we know, t ...
- 2015弱校联盟(1) -A. Easy Math
A. Easy Math Time Limit: 2000ms Memory Limit: 65536KB Given n integers a1,a2,-,an, check if the sum ...
- 湘潭校赛 Easy Wuxing
Easy Wuxing Accepted : 25 Submit : 124 Time Limit : 1000 MS Memory Limit : 65536 KB 题目描述 “五行”是中国 ...
- 2020牛客暑期多校训练营(第一场)Easy Integration
传送门:J. Easy Integration 题意:给你n,求这个积分,最后的结果分子是记为p,分母记为q. 求(p*q-1)mod 998244353. 题解:比赛完看到巨巨说这是贝塔函数,我一搜 ...
- Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy
\(\mathcal{Description}\) Link.(完全一致) 给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
随机推荐
- Face_to_object_design
二.实例 掷骰子游戏:三粒骰子,掷两次,比较两次的结果. 1.提炼 提炼对象:三粒骰子.游戏 提炼对象的属性和功能:掷骰子.比较点数 骰子: 属性:点数 功能:随机获取一个1~6之间的整数值. 游戏: ...
- Mac上“您没有权限来打开应用程序”(Big Sur)
最近电脑更新了Macos的最新11版大苏尔 Big Sur.很快问题就出现了:安装某个软件的时候Key Gen打不开,提示您没有权限来打开应用程序,类似这样:https://zhuanlan.zhih ...
- Spark内核解析
Spark内核概述 Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制.Spark任务调度机制.Spark内存管理机制.Spark核心功能的运行原理等,熟练掌握Spark内核 ...
- 【SpringBoot1.x】SpringBoot1.x 检索
SpringBoot1.x 检索 文章源码 概念 Elasticsearch 是一个分布式的开源搜索和分析引擎,适用于所有类型的数据,包括文本.数字.地理空间.结构化和非结构化数据.Elasticse ...
- 【JavaWeb】JSTL 标签库
JSTL 标签库 简介 JSTL(JSP Standard Tag Library),即 JSP 标准标签库.标签库是为了替换代码脚本,使得整个 jsp 页面变得更加简洁. JSTL 有五个功能不同的 ...
- MySQL45讲:一条update语句是怎样执行的
首先创建一张表: create table T(ID int primary key,c int); 如果要更新ID=2这行+1:应该这样写 update T set c=c+1 where ID=2 ...
- 爬虫-urllib3模块的使用
urllib3是一个功能强大,对SAP健全的 HTTP客户端,许多Python生态系统已经使用了urllib3. 一.安装 sudo pips install urllib3 二.创建PoolMana ...
- dotnet高性能buffer
1 前言 我曾经写过<杂谈.netcore的Buffer相关新类型>的博客,简单介绍过BinaryPrimitives.Span<>,Memory<>,ArrayP ...
- 【ASM】介绍Oracle自带的一些ASM维护工具 (kfod/kfed/amdu)
转自:http://blog.csdn.net/wenzhongyan/article/details/47043253 非常感谢作者的文章,很有价值!至此转载,非常感谢 1.前言 ASM(Autom ...
- leetcode 730. 统计不同回文子序列(区间dp,字符串)
题目链接 https://leetcode-cn.com/problems/count-different-palindromic-subsequences/ 题意 给定一个字符串,判断这个字符串中所 ...