C. Easy

构造两个序列分别要满足 \(\sum_{i=1}^{k} a_{i} = N\) \(\sum_{i=1}^{k} b_{i} = M\)

一种方案能贡献\(\prod_{i=1}^{k} min(a_{i}, b_{i})\) 的分数 求所有方案分数的和

生成函数

对于一个序列 \(a_{0},a_{1},a_{2}\)···

定义它的生成函数为 \(G(x) = a_{0} + a_{1}x + a_{2}x^{2}\)···

生成函数有指数和系数两维信息 所以用来解决计数问题非常强大 因此生成函数的构造是比较关键的

在本题中一个序列不同的方案数 其实就是就把N划分成K个数的方案数

对于每一个数我们可以用一个生成函数\(G(x) = x+x^{2}+x^{3}\)···来表示

它的意义是 每一项其实就是一种操作 比如\(x^{2}\)表示让这一位为2(指数)的方案数为1(系数)

那么把N划分成K个数的方案数就是 \((G(x))^{k} = (x + x^{2}+x^{3}···)^{k}\) 中\(x^{N}\)的系数

如果想维护出一个序列所有方案分数的和 我们可以巧妙的构造 \((G(x))^{k} = (x + 2x^{2}+3x^{3}···)^{k}\)

它的意义是 比如\(2x^{2}\)表示让这一位为2(指数)能让这一种方案的分数\(*2\)(系数)

min的生成函数

容易想到 对于两个数我们可以构造一个生成函数\(G(x,y) = (x + x^{2} + x^{3}···)(y+y^{2}+y^{3}···)\) 用\(x^{i}y^{j}\)来表示第一个数为i 第二个数为j

我们只用了它的指数 显然还有系数可以用来维护信息 能不能用一种构造使得它的系数为\(min(i,j)\)呢

先上结论 我们可以在\(G(x,y)\)后乘上一个\(1+xy+x^{2}y^{2}\)···

理解一下 假设\(i<j\) 它实际上是提供了一个映射 让原来的\(x^{i}y^{j},x^{i-1}y^{j-1},x^{i-2}y^{j-2}···x^{1}y^{j-i+1}\)一共\(i\)项都为\(x^{i}y^{j}\)的系数做了一次贡献

所以在这个多项式里\(x^{i}y^{j}\)的系数恰好为\(min(i,j)\)

题解

综上所述 答案为\(G(x,y) = (x + x^{2} + x^{3}···)^{k}(y+y^{2}+y^{3}···)^{k}(1+xy+x^{2}y^{2}···)^{k}\)这个多项式中\(x^{N}y^{M}\)的系数

我们可以枚举最后一项中\(x^{i}y^{i}\)的指数 就可以得到第一个项中\(x\)的指数为\(N-i\) 第二项\(y\)的指数为\(M-i\)

然后分别计算它们的系数 最后一项是把i个物品分为K个可以为空的集合 前两项分别是把\(N-i\)和\(M-i\)个物品分为K个非空集合

\(ans = \sum_{0}^{min(N-K,M-K)} \binom{N-i-1}{K-1} \binom{M-i-1}{K-1} \binom{i+K-1}{i}\)

#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int mod = 998244353;
const int MAXN = 1000005;
int n, m, k;
int fac[MAXN];
int ny[MAXN];
int inv[MAXN]; int C(int x, int y) {
if(x < y || y < 0 || x < 0) return 0;
return 1LL * fac[x] * inv[x - y] % mod * inv[y] % mod;
} int main() {
fac[0] = ny[0] = inv[0] = 1; ny[1] = 1;
for(int i = 1; i <= 1000000; i++) {
fac[i] = 1LL * i * fac[i - 1] % mod;
if(i > 1) ny[i] = 1LL * ny[mod % i] * (mod - mod / i) % mod;
inv[i] = 1LL * ny[i] * inv[i - 1] % mod;
} int T;
cin>>T;
while(T--) {
scanf("%d%d%d", &n, &m, &k); int ans = 0;
for(int i = 0; i <= min(n, m) - k; i++) {
int tmp = 1LL * C(k + i - 1, i) * C(n - i - 1, k - 1) % mod * C(m - i - 1, k - 1) % mod;
ans = (ans + tmp) % mod;
}
printf("%d\n", ans);
} return 0;
}

2020Nowcode多校 Round5 C. Easy的更多相关文章

  1. 2017多校Round5(hdu6085~hdu6095)

    补题进度:7/11 1001(模意义下的卷积) 题意: 给出长度<=50000的两个数组A[] B[],保证数组中的值<=50000且A[]中数字两两不同,B[]中数字两两不同 有5000 ...

  2. 2020Nowcode多校 Round9 B.Groundhog and Apple Tree

    题意 给一棵树 初始\(hp=0\) 经过一条边会掉血\(w_{i}\) 第一次到达一个点可以回血\(a_{i}\) 在一个点休息\(1s\)可以回复\(1hp\) 血不能小于\(0\) 每条边最多经 ...

  3. 2019牛客多校 Round5

    Solved:4 Rank:122 补题:8/10 A digits 2 签到 把这个数写n遍 #include <bits/stdc++.h> using namespace std; ...

  4. 2016弱校联盟十一专场10.5---As Easy As Possible(倍增)

    题目链接 https://acm.bnu.edu.cn/v3/contest_show.php?cid=8506#problem/A problem description As we know, t ...

  5. 2015弱校联盟(1) -A. Easy Math

    A. Easy Math Time Limit: 2000ms Memory Limit: 65536KB Given n integers a1,a2,-,an, check if the sum ...

  6. 湘潭校赛 Easy Wuxing

    Easy Wuxing Accepted : 25   Submit : 124 Time Limit : 1000 MS   Memory Limit : 65536 KB 题目描述 “五行”是中国 ...

  7. 2020牛客暑期多校训练营(第一场)Easy Integration

    传送门:J. Easy Integration 题意:给你n,求这个积分,最后的结果分子是记为p,分母记为q. 求(p*q-1)mod 998244353. 题解:比赛完看到巨巨说这是贝塔函数,我一搜 ...

  8. Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy

    \(\mathcal{Description}\)   Link.(完全一致)   给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...

  9. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

随机推荐

  1. KDiff3 Merge工具的使用 极简教程

    www.swack.cn - 原文链接:KDiff3 Merge工具 1.软件安装 下载链接:KDiff3-64bit-Setup_0.9.98-2.exe 安装KDiff3 git config - ...

  2. 使用Java语言编写一个五子棋UI界面并实现网络对战功能(非局域网)

    使用Java语言编写一个五子棋UI界面并实现网络对战功能(非局域网) 一,前期准备 1,Java IDE(Eclipse)与JDK的安装与配置jdk-15.0.1-免配置路径版提取码:earu免安装版 ...

  3. ASP.NET Core 3.1 中间件

    参考微软官方文档 : https://docs.microsoft.com/zh-cn/aspnet/core/fundamentals/middleware/?view=aspnetcore-3.1 ...

  4. 【Java基础】Java 语言概述

    Java 语言概述 主要应用场景 JavaEE.大数据.Android 开发方向. 基础知识概述 编程语言核心结构 变量.基本语法.分支.循环.数组.- Java 面向对象的核心逻辑 OOP.封装.继 ...

  5. sort方法和sorted()函数

    sort方法和sorted()函数的区别: 相同点:都能完成排序操作. 不同点: (1)使用sort()方法对list排序会修改list本身,不会返回新list,sort()不能对dict字典进行排序 ...

  6. 【ORACLE错误】SP2-0618: Cannot find the Session Identifier. Check PLUSTRACE role is enabled

    执行set autotrace traceonly的时候,报错 SQL> set autotrace traceonly SP2-0618: Cannot find the Session Id ...

  7. Tippy.js - 免费开源且高度可定制的气泡提示独立组件

    推荐一个非常优秀的 web 气泡提示独立UI组件. 介绍 Tippy.js 是一款用于Web的完整工具提示,弹出菜单,下拉菜单和菜单解决方案.适用于鼠标,键盘和触摸输入. 特点 超轻量的纯 javas ...

  8. python—打开图像文件报错

    今天使用python打开一张图像文件的时候报错了 UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position 0: illeg ...

  9. 浅入深出了解XXE漏洞

    环境搭建 https://github.com/c0ny1/xxe-lab 为了更深入的理解,我准备理论和实际相结合的了解XXE! 浅谈XML 初识XML 一个好的代码基础能帮助你更好理解一类漏洞,所 ...

  10. DockerFile关键字相关作用以及解释

    Dockerfile 关键字 作用 备注 FROM 指定父镜像 指定dockerfile基于那个image构建 MAINTAINER 作者信息 用来标明这个dockerfile谁写的 LABEL 标签 ...