POJ-2411 Mondriann's Dream (状压DP)
求把\(N*M(1\le N,M \le 11)\) 的棋盘分割成若干个\(1\times 2\) 的长方形,有多少种方案。例如当 \(N=2,M=4\)时,共有5种方案。当\(N=2,M=3\)时,有3种方案。
NM只有11,八九不离十可以状压了,反正得挨个铺,所以从上到下考虑。假如现在铺好了前\(i\) 层,基本思想就是从\(i\) 层的状态转移到\(i+1\)层的状态。但是该如何表示?观察一下铺满第 \(i\) 层的样子(必须保证第\(i\)层是满的,也就是说有的可以凸出来到\(i+1\)层但是要保证\(i\)层是满的)

对于第 i 行中竖着放的,第 \(i+1\) 层要受到牵连,它必须补全竖着放置的上一半才行。但对于横着放的,第\(i+1\)层则无所谓。
所以我们可以用二进制中的 1 来表示他是否是竖着放置的上一半。为0则为其他状况。
\(d[i][j]\)表示第 \(i\) 的形态为\(j\) 时,前\(i\) 行分割方案的总数。 \(j\) 是用十进制整数记录的 \(m\) 位二进制数。考虑\(i+1\)行的状态\(k\)在满足什么情况下转移是合法的。
- \(j\)中为 1 的位,\(k\)中必须为0
- \(j\)中为 0 的位,\(k\)中可以为1,但 k 要是为 0,就必须是连续的偶数个0(想一想为什么)
对于第一条,可以用 \(i\&j = 0\) 来判断,对于第二条,有\(z = i|j\),那么 z 的二进制表示中,每一段连续的 0 都必须有偶数个。(这些0代表若干个横着的 \(1\times 2\) 长方形,奇数个0无法分割成这种形态。
#include <iostream>
#include <cstdio>
using namespace std;
int n,m;
long long f[12][1<<11];
bool in_s[1<<11];
int main(){
while(cin>>n>>m && n){
//先把合法状态筛出来,即二进制表示中每一段连续的0都有偶数个
for(int i=0;i<1<<m;i++){
bool cnt = 0,has_odd = 0;
for(int j=0;j<m;j++)
if(i >> j & 1)has_odd |= cnt,cnt=0;
else cnt ^= 1;
in_s[i] = (has_odd | cnt) ? 0 : 1;
}
f[0][0] = 1;
for(int i=1;i<=n;i++){
for(int j=0;j<1<<m;j++){
f[i][j] = 0;
for(int k=0;k< 1<<m;k++){
if((j & k) == 0 && in_s[j|k])
f[i][j] += f[i-1][k];
}
}
}
cout<<f[n][0]<<endl;
}
return 0;
}
POJ-2411 Mondriann's Dream (状压DP)的更多相关文章
- POJ 2411 Mondriaan's Dream -- 状压DP
题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...
- POJ 2411 Mondriaan's Dream ——状压DP 插头DP
[题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...
- Poj 2411 Mondriaan's Dream(状压DP)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...
- POJ 2411 Mondriaan'sDream(状压DP)
题目大意:一个矩阵,只能放1*2的木块,问将这个矩阵完全覆盖的不同放法有多少种. 解析:如果是横着的就定义11,如果竖着的定义为竖着的01,这样按行dp只需要考虑两件事儿,当前行&上一行,是不 ...
- [poj2411] Mondriaan's Dream (状压DP)
状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...
- POJ 1185 炮兵阵地(状压DP)
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 26426 Accepted: 10185 Descriptio ...
- poj 2288 Islands and Bridges ——状压DP
题目:http://poj.org/problem?id=2288 状压挺明显的: 一开始写了(记忆化)搜索,但一直T: #include<iostream> #include<cs ...
- 【POJ 2923】Relocation(状压DP+DP)
题意是给你n个物品,每次两辆车运,容量分别是c1,c2,求最少运送次数.好像不是很好想,我看了网上的题解才做出来.先用状压DP计算i状态下,第一辆可以运送的重量,用该状态的重量总和-第一辆可以运送的, ...
- POJ 1185 炮兵阵地 (状压DP)
题目链接 题意 : 中文题不详述. 思路 :状压DP,1表示该位置放炮弹,0表示不放.dp[i][j][k],代表第 i 行的状态为k时第i-1行的状态为 j 时放置的最大炮弹数.只是注意判断的时候不 ...
随机推荐
- 记一次多事件绑定中自己给自己设置的坑——click,dblclick,mousedown,mousemove,mouseup
目录 项目综述 需求 问题 猜想 解决 反思 项目综述 在页面中模拟某操作系统的操作界面,提供应用窗口的最大化.最小化.还原等功能 需求 对一个应用窗口标题栏双击使其铺满整个视口,再次双击还原到原来大 ...
- CTF常见编码及加解密(超全)
@ 目录 前言 常见CTF编码及加解密 补充 ASCII编码 base家族编码 MD5.SHA1.HMAC.NTLM等类似加密型 1.MD5 2.SHA1 3.HMAC 4.NTLM 5.类似加密穷举 ...
- SpringCloud Alibaba Nacos服务注册与配置管理
Nacos SpringCloud Alibaba Nacos是一个狗抑郁构建云原生应用的动态服务发现.配置管理和服务管理平台. Nacos:Dynamic Naming and Configurat ...
- 解决Cannot find module '@angular/compiler-cli'
前言: 今天clone之前做的一个angular项目,使用ng serve一直提示An unhandled exception occurred: Cannot find module '@angul ...
- oracle动态采样导致数据库出现大量cursor pin s wait on x等待
生产库中,突然出现了大量的cursor pin s wait on x等待,第一反应是数据库出现了硬解析,查看最近的DDL语句,没有发现DDL.那么有可能这个sql是第一次进入 在OLTP高并发下产生 ...
- Java 迭代器的使用 Iterator
Java的集合类可以使用for ... each循环 List Set Queue Deque 我们以List为例 其实一个java编译器并不知道如何遍历一个List 编译器只是把一个for ... ...
- 【MYSQL】DDL语句
介绍:DDL语句,即数据定义语句,定义了不同的数据段,数据库表.表.列.索引等数据库对象:例如,create.drop.alter 适用对象:一般是由数据库管理员DBA使用 1.连接数据库 mysql ...
- Java并发包源码学习系列:阻塞队列实现之PriorityBlockingQueue源码解析
目录 PriorityBlockingQueue概述 类图结构及重要字段 什么是二叉堆 堆的基本操作 向上调整void up(int u) 向下调整void down(int u) 构造器 扩容方法t ...
- 详解Mybatis拦截器(从使用到源码)
详解Mybatis拦截器(从使用到源码) MyBatis提供了一种插件(plugin)的功能,虽然叫做插件,但其实这是拦截器功能. 本文从配置到源码进行分析. 一.拦截器介绍 MyBatis 允许你在 ...
- Spring 设计模式介绍
JDK 中用到了那些设计模式?Spring 中用到了那些设计模式?这两个问题,在面试中比较常见.我在网上搜索了一下关于 Spring 中设计模式的讲解几乎都是千篇一律,而且大部分都年代久远.所以,花了 ...