原博客地址 https://blog.csdn.net/androidchanhao/article/details/81271077

题目链接

https://leetcode.com/problems/stone-game/discuss/

https://leetcode-cn.com/contest/weekly-contest-95/problems/stone-game/

877. 石子游戏

亚历克斯和李用几堆石子在做游戏。偶数堆石子排成一行,每堆都有正整数颗石子 piles[i]

游戏以谁手中的石子最多来决出胜负。石子的总数是奇数,所以没有平局。

亚历克斯和李轮流进行,亚历克斯先开始。 每回合,玩家从行的开始或结束处取走整堆石头。 这种情况一直持续到没有更多的石子堆为止,此时手中石子最多的玩家获胜。

假设亚历克斯和李都发挥出最佳水平,当亚历克斯赢得比赛时返回 true ,当李赢得比赛时返回 false

示例:

输入:[5,3,4,5]

输出:true

解释:

亚历克斯先开始,只能拿前 5 颗或后 5 颗石子 。

假设他取了前 5 颗,这一行就变成了 [3,4,5] 。

如果李拿走前 3 颗,那么剩下的是 [4,5],亚历克斯拿走后 5 颗赢得 10 分。

如果李拿走后 5 颗,那么剩下的是 [3,4],亚历克斯拿走后 4 颗赢得 9 分。

这表明,取前 5 颗石子对亚历克斯来说是一个胜利的举动,所以我们返回 true 。

提示:

  1. 2 <= piles.length <= 500
  2. piles.length 是偶数。
  3. 1 <= piles[i] <= 500
  4. sum(piles) 是奇数。

题解:

由于题目的限制条件是石头的堆数是偶数,且石头的总数是奇数,因此Alex可以选择一种策略总是选偶数堆或者奇数堆的石头,则一定可以胜过Lee。简单说,Alex在题目的条件限制下是必胜的。但这里我们需要进行更一般化的分析,例如石头堆数不一定是偶数,石头总数也不一定是奇数,且不但要判断Alex是否能赢,还要判断最多赢多少分,如果输,能不能提供最少输多少分。这里的分数是指多拿的石头数量。

我们每次只能拿两端的石头堆的石头,但我们又不知道拿完后剩下的石头堆的情况,因此我们考虑先解决子问题。例如我们求出2个相邻石头堆的胜负情况,我们可以根据求出的数据求出相邻3个石头堆的胜负情况,以此类推,我们可以根据n-1个相邻石头堆的胜负情况,求出n个相邻石头堆的胜负情况,即我们的原问题。

根据我们的类推我们可以设dp[i][j]piles[i]~piles[j]Alex最多可以赢Lee的分数。每次取石头堆只能从两端取,因此:dp[i][j] = max(piles[i] - dp[i+1][j], piles[j] - dp[i][j-1])。其中

piles[i] - dp[i+1][j]表示Alex取走i上的石头堆,piles[j] - dp[i][j-1]表示Alex取走的是j上的石头堆。注意,为什么dp[i+1][j]表示piles[i+1]~piles[j]之间Alex最多可以赢Lee的分数,而piles[i]要减去该值而不是加上该值呢?由于我们的要求是每一步Alex和Lee采取的都是最优策略,当取piles[i]时,piles[i+1]~piles[j]中Alex和Lee的走法会调换。意即Lee走Alex的走法,Alex走Lee的走法,因此这里要做减法。

以题目中的[5, 3, 4, 5]为例,下图是我们的计算步骤:

按照这个思路,很容易写出完整的代码:

class Solution {
public:
bool stoneGame(vector<int>& piles) {
int n = piles.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
for(int i = 0; i < n; i++) {
dp[i][i] = piles[i]; //初始化只有i一个石头堆的情形
}
for(int dis = 1; dis < n; dis++) {//依次计算相邻2个石头堆到n个石头堆的情形
for(int i = 0; i < n - dis; i++) {
dp[i][i+dis] = max(piles[i]-dp[i+1][i+dis], piles[i+dis]-dp[i][i+dis-1]);
}
}
return dp[0][n-1] > 0;
}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

参考资料:

https://leetcode.com/problems/stone-game/discuss/154610/C++JavaPython-DP-or-Just-return-true

leetcode 877. Stone Game 详解 -——动态规划的更多相关文章

  1. 详解动态规划(Dynamic Programming)& 背包问题

    详解动态规划(Dynamic Programming)& 背包问题 引入 有序号为1~n这n项工作,每项工作在Si时间开始,在Ti时间结束.对于每项工作都可以选择参加与否.如果选择了参与,那么 ...

  2. [LeetCode] 877. Stone Game 石子游戏

    Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, ...

  3. LeetCode刷题 字符串详解

    一.字符串常用的操作 1. string类 1.1 string的定义与初始化 1.1.1 string的定义 1.1.2 string的初始化 1.2 string的赋值与swap.大小操作.关系运 ...

  4. LeetCode 877. Stone Game

    原题链接在这里:https://leetcode.com/problems/stone-game/ 题目: Alex and Lee play a game with piles of stones. ...

  5. LeetCode 413 Arithmetic Slices详解

    这个开始自己做的动态规划复杂度达到了O(n), 是用的是2维的矩阵来存前面的数据,复杂度太高了, 虽然好理解,但是没效率,后面看这个博客发现没有动态规划做了这个题 也是比较厉害. 转载地址: http ...

  6. [LeetCode] 877. Stone Game == [LintCode] 396. Coins in a Line 3_hard tag: 区间Dynamic Programming, 博弈

    Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, ...

  7. LeetCode 856 递归思路详解

    题目描述 给定一个平衡括号字符串 S,按下述规则计算该字符串的分数: () 得 1 分. AB 得 A + B 分,其中 A 和 B 是平衡括号字符串. (A) 得 2 * A 分,其中 A 是平衡括 ...

  8. LeetCode 392. Is Subsequence 详解

    题目详情 给定字符串 s 和 t ,判断 s 是否为 t 的子序列. 你可以认为 s 和 t 中仅包含英文小写字母.字符串 t 可能会很长(长度 ~= 500,000),而 s 是个短字符串(长度 & ...

  9. LeetCode 115.不同的子序列 详解

    题目详情 给定一个字符串 S 和一个字符串 T,计算在 S 的子序列中 T 出现的个数. 一个字符串的一个子序列是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串.(例如, ...

随机推荐

  1. OSCP Learning Notes - Capstone(4)

    SickOS 1.2 Walkthrough Preparation: Down load the SickOS virtual machines from the following website ...

  2. fastjson将json字符串转化为java对象

    目录 一.导入一个fastjson的jar包 二.Json字符串格式 三.根据json的格式创建Java类 四.给java类的所有属性添加setter方法 五.转换为java对象 一.导入一个fast ...

  3. 3c数码商城

    目标:2020样卷 已完成:增删改查 未完成:有些小知识点不在意丢失,因此导致有些未完善 解决方案:写代码时不要走心,专心一点,减少失误,减少时间,增加效率,使自己的项目看起来更优秀,注意小知识的掌握 ...

  4. 一款直击痛点的优秀http框架,让我超高效率完成了和第三方接口的对接

    1.背景 因为业务关系,要和许多不同第三方公司进行对接.这些服务商都提供基于http的api.但是每家公司提供api具体细节差别很大.有的基于RESTFUL规范,有的基于传统的http规范:有的需要在 ...

  5. [转载]android网络通信解析

    原文地址:android网络通信解析作者:clunyes 网络编程的目的就是直接戒间接地通过网络协议不其他计算机进行通讯. 网络编程中有两个主要的问题, 一个是如何准确的定位网络上一台戒多台指主机: ...

  6. 构建一个基于事件分发驱动的EventLoop线程模型

    在之前的文章中我们详细介绍过Netty中的NioEventLoop,NioEventLoop从本质上讲是一个事件循环执行器,每个NioEventLoop都会绑定一个对应的线程通过一个for(;;)循环 ...

  7. Django---博客项目实战

    1.urls from django.conf.urls import url from django.contrib import admin from blog import views urlp ...

  8. .Net微服务实战之CI/CD

    系列文章 .Net微服务实战之技术选型篇 .Net微服务实战之技术架构分层篇 .Net微服务实战之DevOps篇 .Net微服务实战之负载均衡(上) 相关源码:https://github.com/S ...

  9. Day06_商品分类(vuetify-nginx-cors)与品牌查询

    学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"乐优商城"获取视频和教程资料! b站在线视频 0.学习 ...

  10. mongoose.model第三个参数的问题

    这个是个好问题,之前按照教程做的数据库没有问题,现在自己从新做出现了问题.还好之前有无意中接触了这个知识点,不然感觉真的很难解决. 在检查完所有东西都没错的时候(前端传给req的数据正常,与数据库相符 ...