hdu1625 Numbering Paths (floyd判环)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 207 Accepted Submission(s): 63
but enumerating all possible ``yes'' answers may be very difficult (or at least time-consuming).
This problem involves determining the number of routes available to an emergency vehicle operating in a city of one-way streets.
Given the intersections connected by one-way streets in a city, you are to write a program that determines the number of different routes between each intersection. A route is a sequence of one-way streets connecting two intersections.
Intersections are identified by non-negative integers. A one-way street is specified by a pair of intersections. For example, j k indicates that there is a one-way street from intersection j to intersection k. Note that two-way streets can be modeled by specifying
two one-way streets: j k and k j .
Consider a city of four intersections connected by the following one-way streets:
0 1
0 2
1 2
2 3
There is one route from intersection 0 to 1, two routes from 0 to 2 (the routes are 0-1-2 and 0-2 ), two routes from 0 to 3, one route from 1 to 2, one route from 1 to 3, one route from 2 to 3, and no other routes.
It is possible for an infinite number of different routes to exist. For example if the intersections above are augmented by the street , there is still only one route from 0 to 1, but there are infinitely many different routes from 0 to 2. This is because the
street from 2 to 3 and back to 2 can be repeated yielding a different sequence of streets and hence a different route. Thus the route 0-2-3-2-3-2 is a different route than 0-2-3-2 .
intersection k. In all cities, intersections are numbered sequentially from 0 to the ``largest'' intersection. All integers in the input are separated by whitespace. The input is terminated by end-of-file.
There will never be a one-way street from an intersection to itself. No city will have more than 30 intersections.
be printed in row-major order, one row per line. Each matrix should be preceded by the string ``matrix for city k'' (with k appropriately instantiated, beginning with 0).
If there are an infinite number of different paths between two intersections a -1 should be printed. DO NOT worry about justifying and aligning the output of each matrix. All entries in a row should be separated by whitespace.
5
0 2
0 1 1 5 2 5 2 1
9
0 1 0 2 0 3
0 4 1 4 2 1
2 0
3 0
3 1
0 4 1 3 2
0 0 0 0 0
0 2 0 2 1
0 1 0 0 0
0 1 0 1 0
matrix for city 1
0 2 1 0 0 3
0 0 0 0 0 1
0 1 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
matrix for city 2
-1 -1 -1 -1 -1
0 0 0 0 1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
0 0 0 0 0
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef unsigned long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 505
#define maxnode 100
int gra[40][40];
int main()
{
int n,m,i,j,c,d,k;
int cas=0;
while(scanf("%d",&m)!=EOF)
{
n=0;
memset(gra,0,sizeof(gra));
for(i=1;i<=m;i++){
scanf("%d%d",&c,&d);
gra[c][d]=1;
n=max(n,c);
n=max(n,d);
}
for(k=0;k<=n;k++){
for(i=0;i<=n;i++){
for(j=0;j<=n;j++){
gra[i][j]+=gra[i][k]*gra[k][j];
}
}
}
for(i=0;i<=n;i++){
if(gra[i][i]){
gra[i][i]=-1;
for(j=0;j<=n;j++){
for(k=0;k<=n;k++){
if(gra[j][i] && gra[i][k]){
gra[j][k]=-1;
}
}
}
}
}
printf("matrix for city %d\n",cas++);
for(i=0;i<=n;i++){
for(j=0;j<=n;j++){
printf(" %d",gra[i][j]);
}
printf("\n");
}
}
}
hdu1625 Numbering Paths (floyd判环)的更多相关文章
- floyd判环算法(龟兔赛跑算法)
floyd判环算法(龟兔赛跑算法) 注意,这个算法是用来判断一条链+一条环的图,环的长度或者环与链的交界处的,所以此floyd非彼floyd(虽然都是一个人想出来的). (图不是我的) 如果只要求环的 ...
- Communication【floyd判环+并查集】
Communication 题目链接(点击) 题目描述 The Ministry of Communication has an extremely wonderful message system, ...
- SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455 Due to the slow 'mod' and 'div' operati ...
- UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)
CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bore ...
- 【set&&sstream||floyed判环算法】【UVa 11549】Calculator Conundrum
CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bored ...
- leetcode202(Floyd判圈算法(龟兔赛跑算法))
Write an algorithm to determine if a number is "happy". 写出一个算法确定一个数是不是快乐数. A happy number ...
- Floyd判圈算法
Floyd判圈算法 leetcode 上 编号为202 的happy number 问题,有点意思.happy number 的定义为: A happy number is a number defi ...
- Codeforces Gym 101252D&&floyd判圈算法学习笔记
一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...
- Floyd判断环算法总结
Floyd判断环算法 全名Floyd’s cycle detection Algorithm, 又叫龟兔赛跑算法(Floyd's Tortoise and Hare),常用于链表.数组转化成链表的题目 ...
随机推荐
- LeetCode876 链表的中间结点
给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形式:[3,4 ...
- Hystrix-服务降级-服务熔断-服务限流
Hystrix简介 Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时.异常等,Hystrix能够保证在一个依赖出问题的情况下,不会导致 ...
- python学习笔记 | 猜拳游戏
''' @author: 人人都爱小雀斑 @time: 2020/3/6 18:52 @desc: 实验结果心得: 1.难点主要在判断谁输谁赢 2.挺好的 ''' import random d={1 ...
- 【Spring】Spring中的Bean - 4、Bean的生命周期
Bean的生命周期 简单记录-Java EE企业级应用开发教程(Spring+Spring MVC+MyBatis)-Spring中的Bean 了解Spring中Bean的生命周期有何意义? 了解Sp ...
- 【Oracle】instr()函数详解
1)instr()函数的格式 (俗称:字符查找函数) 格式一:instr( string1, string2 ) / instr(源字符串, 目标字符串) 格式二:instr( strin ...
- oracle修改表栏位类型
需求:ID栏位在创建的时候是varchar类型,后续要修改为number类型 因为oracle修改表栏位类型的时候需要栏位内没有数据,因此无法直接把ID从varchar修改为number 1.新建一个 ...
- Py-上下文管理方法,描述符的应用,错误与异常
上下文管理方法: 可以在exit里面弄一些内存清理的功能 class Open: def __init__(self,name): self.name=name def __enter__(self) ...
- (16)-Python3之--自定义logging日志模块
1.自定义的日志模块如下: import logging from logging.handlers import TimedRotatingFileHandler import datetime f ...
- Bitter.Core系列八:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore 之 事务
Bitter.Core 编写事务相当简单,Bitter.Core 尽可能的将代码编写量降为最低,例外一方方面保证客户主观能控制代码.Bitter.Core 事务提交,支持Builkcopy事务,原生事 ...
- PE节表