Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 207    Accepted Submission(s): 63


Problem Description
Problems that process input and generate a simple ``yes'' or ``no'' answer are called decision problems. One class of decision problems, the NP-complete problems, are not amenable to general efficient solutions. Other problems may be simple as decision problems,
but enumerating all possible ``yes'' answers may be very difficult (or at least time-consuming). 

This problem involves determining the number of routes available to an emergency vehicle operating in a city of one-way streets.

Given the intersections connected by one-way streets in a city, you are to write a program that determines the number of different routes between each intersection. A route is a sequence of one-way streets connecting two intersections. 

Intersections are identified by non-negative integers. A one-way street is specified by a pair of intersections. For example, j k indicates that there is a one-way street from intersection j to intersection k. Note that two-way streets can be modeled by specifying
two one-way streets: j k and k j . 

Consider a city of four intersections connected by the following one-way streets: 

0 1

0 2

1 2

2 3

There is one route from intersection 0 to 1, two routes from 0 to 2 (the routes are 0-1-2 and 0-2 ), two routes from 0 to 3, one route from 1 to 2, one route from 1 to 3, one route from 2 to 3, and no other routes. 

It is possible for an infinite number of different routes to exist. For example if the intersections above are augmented by the street , there is still only one route from 0 to 1, but there are infinitely many different routes from 0 to 2. This is because the
street from 2 to 3 and back to 2 can be repeated yielding a different sequence of streets and hence a different route. Thus the route 0-2-3-2-3-2 is a different route than 0-2-3-2 . 
 

Input
The input is a sequence of city specifications. Each specification begins with the number of one-way streets in the city followed by that many one-way streets given as pairs of intersections. Each pair j k represents a one-way street from intersection j to
intersection k. In all cities, intersections are numbered sequentially from 0 to the ``largest'' intersection. All integers in the input are separated by whitespace. The input is terminated by end-of-file. 

There will never be a one-way street from an intersection to itself. No city will have more than 30 intersections.
 

Output
For each city specification, a square matrix of the number of different routes from intersection j to intersection k is printed. If the matrix is denoted M, then M[j][k] is the number of different routes from intersection j to intersection k. The matrix M should
be printed in row-major order, one row per line. Each matrix should be preceded by the string ``matrix for city k'' (with k appropriately instantiated, beginning with 0). 

If there are an infinite number of different paths between two intersections a -1 should be printed. DO NOT worry about justifying and aligning the output of each matrix. All entries in a row should be separated by whitespace. 
 

Sample Input

7 0 1 0 2 0 4 2 4 2 3 3 1 4 3
5
0 2
0 1 1 5 2 5 2 1
9
0 1 0 2 0 3
0 4 1 4 2 1
2 0
3 0
3 1
 

Sample Output

matrix for city 0
0 4 1 3 2
0 0 0 0 0
0 2 0 2 1
0 1 0 0 0
0 1 0 1 0
matrix for city 1
0 2 1 0 0 3
0 0 0 0 0 1
0 1 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
matrix for city 2
-1 -1 -1 -1 -1
0 0 0 0 1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
0 0 0 0 0
 
题意:给你n条边,让你求出一个点到另一个点能走的路线的条数,如果能走的路线中有环,那么就输出-1.
思路:因为数据很小,只有30,所以可以用floyd先算出每两个点之间的路线条数,方法为f[i][j]+=gra[i][k]*gra[k][j].然后循环每一个点,判断f[i][i]是不是为0,如果不为0,那么说明i这个点在环上,之后只要看任意两点j能不能经过i后到达k,如果能,那么f[j][k]就是-1.

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef unsigned long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 505
#define maxnode 100
int gra[40][40]; int main()
{
int n,m,i,j,c,d,k;
int cas=0;
while(scanf("%d",&m)!=EOF)
{
n=0;
memset(gra,0,sizeof(gra));
for(i=1;i<=m;i++){
scanf("%d%d",&c,&d);
gra[c][d]=1;
n=max(n,c);
n=max(n,d);
}
for(k=0;k<=n;k++){
for(i=0;i<=n;i++){
for(j=0;j<=n;j++){
gra[i][j]+=gra[i][k]*gra[k][j];
}
}
}
for(i=0;i<=n;i++){
if(gra[i][i]){
gra[i][i]=-1;
for(j=0;j<=n;j++){
for(k=0;k<=n;k++){
if(gra[j][i] && gra[i][k]){
gra[j][k]=-1;
}
}
}
}
}
printf("matrix for city %d\n",cas++);
for(i=0;i<=n;i++){
for(j=0;j<=n;j++){
printf(" %d",gra[i][j]);
}
printf("\n");
}
}
}

hdu1625 Numbering Paths (floyd判环)的更多相关文章

  1. floyd判环算法(龟兔赛跑算法)

    floyd判环算法(龟兔赛跑算法) 注意,这个算法是用来判断一条链+一条环的图,环的长度或者环与链的交界处的,所以此floyd非彼floyd(虽然都是一个人想出来的). (图不是我的) 如果只要求环的 ...

  2. Communication【floyd判环+并查集】

    Communication 题目链接(点击) 题目描述 The Ministry of Communication has an extremely wonderful message system, ...

  3. SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455 Due to the slow 'mod' and 'div' operati ...

  4. UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)

    CALCULATOR CONUNDRUM   Alice got a hold of an old calculator that can display n digits. She was bore ...

  5. 【set&&sstream||floyed判环算法】【UVa 11549】Calculator Conundrum

    CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bored ...

  6. leetcode202(Floyd判圈算法(龟兔赛跑算法))

    Write an algorithm to determine if a number is "happy". 写出一个算法确定一个数是不是快乐数. A happy number ...

  7. Floyd判圈算法

    Floyd判圈算法 leetcode 上 编号为202 的happy number 问题,有点意思.happy number 的定义为: A happy number is a number defi ...

  8. Codeforces Gym 101252D&&floyd判圈算法学习笔记

    一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...

  9. Floyd判断环算法总结

    Floyd判断环算法 全名Floyd’s cycle detection Algorithm, 又叫龟兔赛跑算法(Floyd's Tortoise and Hare),常用于链表.数组转化成链表的题目 ...

随机推荐

  1. 【Spring】Spring 事务控制

    Spring 事务控制 Spring 事务控制介绍 JavaEE 体系进行分层开发,事务控制位于业务层,Spring 提供了分层设计业务层的事务处理解决方案. Spring 的事务控制都是基于 AOP ...

  2. C++中的extern“C”

    首先引入extern"C"的官方解释 extern "C" is meant to be recognized by a C++ compiler and to ...

  3. Hbase 手动执行MajorCompation

    说明: Major Compaction 的作用: 1.将一个Region下的所有StoreFile合并成一个StoreFile文件 2.对于删除.过期.多余版本的数据进行清除 由于MajorComp ...

  4. 一文带你学会AQS和并发工具类的关系2

    1.创建公平锁 1.使用方式 Lock reentrantLock = new ReentrantLock(true); reentrantLock.lock(); //加锁 try{ // todo ...

  5. awk -v参数

    -v var=val --assign var=val Assign the value val to the variable var, before execution of the progra ...

  6. LeetCode938. 二叉搜索树的范围和

    题目 1 class Solution { 2 public: 3 int sum = 0; 4 int rangeSumBST(TreeNode* root, int low, int high) ...

  7. 【Android初级】如何实现一个“模拟后台下载”的加载效果(附源码)

    在Android里面,后台的任务下载功能是非常常用的,比如在APP Store里面下载应用,下载应用时,需要跟用户进行交互,告诉用户当前正在下载以及下载完成等. 今天我将通过使用Android的原生控 ...

  8. windows10复制粘贴键突然失效无法复制粘贴的最简单办法

    报了学习班,打开了VCE的加密文档 今天复制粘贴键突然失效 在网上捣鼓了好多方法都不行最后发现看看你有没有在用加密文件,也就是网课类的文档和视频.有就把它关了关了就好了

  9. Vue中组件间通信的方式

    Vue中组件间通信的方式 Vue中组件间通信包括父子组件.兄弟组件.隔代组件之间通信. props $emit 这种组件通信的方式是我们运用的非常多的一种,props以单向数据流的形式可以很好的完成父 ...

  10. Bitter.Core系列六:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore ORM 之 示例 DataTable 模型转换

    当我们查询之前,我们先构造一个查询对象的输出DTO.如下图代码: public class TScoreSearchDto { /// <summary> /// 分数 /// </ ...