Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 207    Accepted Submission(s): 63


Problem Description
Problems that process input and generate a simple ``yes'' or ``no'' answer are called decision problems. One class of decision problems, the NP-complete problems, are not amenable to general efficient solutions. Other problems may be simple as decision problems,
but enumerating all possible ``yes'' answers may be very difficult (or at least time-consuming). 

This problem involves determining the number of routes available to an emergency vehicle operating in a city of one-way streets.

Given the intersections connected by one-way streets in a city, you are to write a program that determines the number of different routes between each intersection. A route is a sequence of one-way streets connecting two intersections. 

Intersections are identified by non-negative integers. A one-way street is specified by a pair of intersections. For example, j k indicates that there is a one-way street from intersection j to intersection k. Note that two-way streets can be modeled by specifying
two one-way streets: j k and k j . 

Consider a city of four intersections connected by the following one-way streets: 

0 1

0 2

1 2

2 3

There is one route from intersection 0 to 1, two routes from 0 to 2 (the routes are 0-1-2 and 0-2 ), two routes from 0 to 3, one route from 1 to 2, one route from 1 to 3, one route from 2 to 3, and no other routes. 

It is possible for an infinite number of different routes to exist. For example if the intersections above are augmented by the street , there is still only one route from 0 to 1, but there are infinitely many different routes from 0 to 2. This is because the
street from 2 to 3 and back to 2 can be repeated yielding a different sequence of streets and hence a different route. Thus the route 0-2-3-2-3-2 is a different route than 0-2-3-2 . 
 

Input
The input is a sequence of city specifications. Each specification begins with the number of one-way streets in the city followed by that many one-way streets given as pairs of intersections. Each pair j k represents a one-way street from intersection j to
intersection k. In all cities, intersections are numbered sequentially from 0 to the ``largest'' intersection. All integers in the input are separated by whitespace. The input is terminated by end-of-file. 

There will never be a one-way street from an intersection to itself. No city will have more than 30 intersections.
 

Output
For each city specification, a square matrix of the number of different routes from intersection j to intersection k is printed. If the matrix is denoted M, then M[j][k] is the number of different routes from intersection j to intersection k. The matrix M should
be printed in row-major order, one row per line. Each matrix should be preceded by the string ``matrix for city k'' (with k appropriately instantiated, beginning with 0). 

If there are an infinite number of different paths between two intersections a -1 should be printed. DO NOT worry about justifying and aligning the output of each matrix. All entries in a row should be separated by whitespace. 
 

Sample Input

7 0 1 0 2 0 4 2 4 2 3 3 1 4 3
5
0 2
0 1 1 5 2 5 2 1
9
0 1 0 2 0 3
0 4 1 4 2 1
2 0
3 0
3 1
 

Sample Output

matrix for city 0
0 4 1 3 2
0 0 0 0 0
0 2 0 2 1
0 1 0 0 0
0 1 0 1 0
matrix for city 1
0 2 1 0 0 3
0 0 0 0 0 1
0 1 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
matrix for city 2
-1 -1 -1 -1 -1
0 0 0 0 1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
0 0 0 0 0
 
题意:给你n条边,让你求出一个点到另一个点能走的路线的条数,如果能走的路线中有环,那么就输出-1.
思路:因为数据很小,只有30,所以可以用floyd先算出每两个点之间的路线条数,方法为f[i][j]+=gra[i][k]*gra[k][j].然后循环每一个点,判断f[i][i]是不是为0,如果不为0,那么说明i这个点在环上,之后只要看任意两点j能不能经过i后到达k,如果能,那么f[j][k]就是-1.

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef unsigned long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 505
#define maxnode 100
int gra[40][40]; int main()
{
int n,m,i,j,c,d,k;
int cas=0;
while(scanf("%d",&m)!=EOF)
{
n=0;
memset(gra,0,sizeof(gra));
for(i=1;i<=m;i++){
scanf("%d%d",&c,&d);
gra[c][d]=1;
n=max(n,c);
n=max(n,d);
}
for(k=0;k<=n;k++){
for(i=0;i<=n;i++){
for(j=0;j<=n;j++){
gra[i][j]+=gra[i][k]*gra[k][j];
}
}
}
for(i=0;i<=n;i++){
if(gra[i][i]){
gra[i][i]=-1;
for(j=0;j<=n;j++){
for(k=0;k<=n;k++){
if(gra[j][i] && gra[i][k]){
gra[j][k]=-1;
}
}
}
}
}
printf("matrix for city %d\n",cas++);
for(i=0;i<=n;i++){
for(j=0;j<=n;j++){
printf(" %d",gra[i][j]);
}
printf("\n");
}
}
}

hdu1625 Numbering Paths (floyd判环)的更多相关文章

  1. floyd判环算法(龟兔赛跑算法)

    floyd判环算法(龟兔赛跑算法) 注意,这个算法是用来判断一条链+一条环的图,环的长度或者环与链的交界处的,所以此floyd非彼floyd(虽然都是一个人想出来的). (图不是我的) 如果只要求环的 ...

  2. Communication【floyd判环+并查集】

    Communication 题目链接(点击) 题目描述 The Ministry of Communication has an extremely wonderful message system, ...

  3. SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455 Due to the slow 'mod' and 'div' operati ...

  4. UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)

    CALCULATOR CONUNDRUM   Alice got a hold of an old calculator that can display n digits. She was bore ...

  5. 【set&&sstream||floyed判环算法】【UVa 11549】Calculator Conundrum

    CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bored ...

  6. leetcode202(Floyd判圈算法(龟兔赛跑算法))

    Write an algorithm to determine if a number is "happy". 写出一个算法确定一个数是不是快乐数. A happy number ...

  7. Floyd判圈算法

    Floyd判圈算法 leetcode 上 编号为202 的happy number 问题,有点意思.happy number 的定义为: A happy number is a number defi ...

  8. Codeforces Gym 101252D&&floyd判圈算法学习笔记

    一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...

  9. Floyd判断环算法总结

    Floyd判断环算法 全名Floyd’s cycle detection Algorithm, 又叫龟兔赛跑算法(Floyd's Tortoise and Hare),常用于链表.数组转化成链表的题目 ...

随机推荐

  1. LeetCode876 链表的中间结点

    给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形式:[3,4 ...

  2. Hystrix-服务降级-服务熔断-服务限流

    Hystrix简介 Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时.异常等,Hystrix能够保证在一个依赖出问题的情况下,不会导致 ...

  3. python学习笔记 | 猜拳游戏

    ''' @author: 人人都爱小雀斑 @time: 2020/3/6 18:52 @desc: 实验结果心得: 1.难点主要在判断谁输谁赢 2.挺好的 ''' import random d={1 ...

  4. 【Spring】Spring中的Bean - 4、Bean的生命周期

    Bean的生命周期 简单记录-Java EE企业级应用开发教程(Spring+Spring MVC+MyBatis)-Spring中的Bean 了解Spring中Bean的生命周期有何意义? 了解Sp ...

  5. 【Oracle】instr()函数详解

    1)instr()函数的格式  (俗称:字符查找函数) 格式一:instr( string1, string2 )    /   instr(源字符串, 目标字符串) 格式二:instr( strin ...

  6. oracle修改表栏位类型

    需求:ID栏位在创建的时候是varchar类型,后续要修改为number类型 因为oracle修改表栏位类型的时候需要栏位内没有数据,因此无法直接把ID从varchar修改为number 1.新建一个 ...

  7. Py-上下文管理方法,描述符的应用,错误与异常

    上下文管理方法: 可以在exit里面弄一些内存清理的功能 class Open: def __init__(self,name): self.name=name def __enter__(self) ...

  8. (16)-Python3之--自定义logging日志模块

    1.自定义的日志模块如下: import logging from logging.handlers import TimedRotatingFileHandler import datetime f ...

  9. Bitter.Core系列八:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore 之 事务

    Bitter.Core 编写事务相当简单,Bitter.Core 尽可能的将代码编写量降为最低,例外一方方面保证客户主观能控制代码.Bitter.Core 事务提交,支持Builkcopy事务,原生事 ...

  10. PE节表