5和6是在数据回归中用的较多的损失函数

5. nn.L1Loss

功能:计算inputs与target之差的绝对值

代码:

nn.L1Loss(reduction='mean')

公式:

\[l_n = |x_n-y_n|
\]

6. nn.MSELoss

功能:计算inputs与target之差的平方

代码:

nn.MSELoss(reduction='mean')

主要参数:reduction:计算模式,none/sum/mean

公式:

\[l_n = (x_n - y_n)^2
\]

7. SmoothL1Loss

功能:平滑的L1Loss

代码:

nn.SmoothL1Loss(size_average=None,reduce=None,reduction='mean')
$$f(x)=
\begin{cases}
0& \text{x=0}\\
1& \text{x!=0}
\end{cases}$$
\[loss(x,y)=\frac{1}{n}\sum_{i}{z_i}\\
z_i = \begin{cases}
0.5(x_i - y_i)^2& \text{,if|x_i - y_i|}<1\\
|x_i-y_i|-0.5& \text{,otherwise} \end{cases}
\]

8. PoissonNLLLoss

功能:泊松分布的负对数似然损失函数

主要参数:

  • log_input:输入是否为对数形式,决定计算公式
  • full:计算所有Loss,默认为False
  • eps:修正项,避免log(input)为nan

    代码:
nn.PoissonNLLLoss(log_input=True,full=False,eps=1e-08,reduction='mean') 

log_input = True
loss(input,target)=exp(input)-target*input log_input = False
loss(input,target)=input-target*log(input+eps)

9. nn.KLDivLoss

功能:计算KLD(divergence),KL散度,相对熵

注意事项:需提前将输入计算log-probabilities,如通过nn.logsoftmax(),也就是输入一个概率,概率取值的区间是(0,1)。因为在公式中有Log,因此要求我们在输入中就给log函数进行运算。

主要参数:

-reduce:none,sum,mean,batchmean.

batchmean-batchsize维度求平均值

nn.KLDivLoss(reduction='mean')
\[D_{KL}(P||Q)=E_{x\sim p}\Big[log \frac{P(x)}{Q(x)} \Big]=E_{x\sim p}[log P(x)-log Q(x)]\\
=\sum_{i=1}^{N}P(x_i)(logP(x_i)-logQ(x_i))
\]
\[l_n = y_n(log_{yn}-x_n)
\]

10. nn.MarginRankingLoss

功能:计算两个向量之间的相似度,用于排序任务

特别说明:该方法计算两组数据之间的差异,返回一个n*n的loss的矩阵

主要参数:

  • margin:边界值,x1与x2之间的差异值
  • reduction:计算模式,可为none/sum/mean

    y=1时,希望x1比x2大,当x1>x2时,不产生Loss

    y=-1时,希望x2比x1大,当x2>x1时,不产生Loss
nn.MarginRankingLoss(margin=0.0,size_average=None,reduce=None,reduction='mean')
\[loss(x,y)=max(0,-y*(x1-x2)+margin)
\]

11. nn.MultiLabelMarginLoss

功能:多标签边界损失函数。

比如一个样本有多个类别。

距离:四分类任务,样本x属于0类和3类

标签:[0,3-1,-1],而不是[1,0,0,1]

主要参数:

  • reduction:计算模式,可为none/sum/mean
nn.MultiLabelMarginLoss(size_average=None,reduce=None,reduction='mean')
\[loss(x,y) = \sum_{ij}\frac{max(0,1-(x[y[i]])-x[i])}{x.size(0)}\\
where\ i == 0 \to x.size(0),j==0 \to y.size(0),y[j]\geq 0 ,and\ i \neq y[j] for\ all\ i\ and\ j.
\]

分母是x的大小,是输出向量的神经元的个数。

12. nn.SoftMarginLoss

功能:计算二分类的logistic损失

主要参数

  • reduction:计算模式,可为none,sum,mean
nn.SoftMarginLoss(size_average=None,reduce=None,reduction='mean')
\[loss(x,y)=\sum_{i}\frac{log(1+exp(-y[i]*x[i]))}{x.nelement()}
\]

13. nn.MultiLabelSoftMarginLoss

功能:SoftMarginLoss多标签版本

主要参数:这里的标签是01。

  • weight:各类别的Loss设置权值
  • reduction:计算模式,可为none,sum,mean
nn.MultiLabelSoftMarginLoss(weight=None,size_average=None,reduce=None,reduction='mean')
\[loss(x,y)=-\frac{1}{C}*\sum_i y[i]*log((1+exp(-x[i]))^{-1})
+(1-y[i])*log\Big(\frac{exp(-x[i])}{(1+exp(-x[i]))} \Big)
\]

14. nn.MultiMarginLoss

功能:计算多分类的折页损失

主要参数:

  • p:可选1或2
  • weight:各类别的Loss设置权值
  • margin:边界值
  • reduction:计算模式,可为none,sum,mean
nn.MultiMarginLoss(p=1,margin=1.0,weight=None,size_average=None,reduce=None,reduction='mean')
\[loss(x,y)=\frac{\sum_(i)max(0,margin-x[y]+x[i])^p}{x.size(0)}\\
where\ x \in \{0,...,x.size(0)-1 \},y\in \{0,...,y.size(0)-1\},0\leq y[j] \leq x.size(0)-1,and\ i\neq y[j]\ for \ all\ i\ and\ i.
\]

15. nn.TripletMarginLoss

功能:计算三元组损失,人脸验证中常用

主要参数:

  • p :范数的阶,默认为2
  • margin:边界值
  • reduction:计算模式,none,sum,mean
nn.TripletMarginLoss(margin=1.0,p=2.0,eps=1e-06,swap=False,size_average=None,reduce=None,reduction='mean')
\[L(a,p,n)=max\{d(a_i,p_i)-d(a_i,n_i)+margin,0 \} \\
d(x_i,y_i)=||x_i-y_i||_p
\]

16. nn.HingeEmbeddingLoss

功能:计算两个输入的相似性,常用于非线性embedding和半监督学习

特别注意:输入x应为两个输入之差的绝对值

主要参数:

  • margin:边界值
  • reduction:计算模式,可为none,sum,mean
nn.HingeEmbeddingLoss(margin=1.0,size_average=None,reduce=None,reduction='mean')
\[l_n=\begin{cases}
x_n& \text{,if y_n=1,}\\
max\{0,\Delta -x_n\}& \text{,if y_n=-1}\end{cases}
\]

17. nn.CosineEmbeddingLoss

功能:采用余弦相似度计算两个输入的相似性

主要参数:

  • margin:可取值[-1,1],推荐为[0,0.5]
  • reduction:计算模式,可为none,sum,mean
nn.CosineEmbeddingLoss(margin=0.0,size_average=None,reduce=None,reduction='mean')
\[loss(x,y)=\begin{cases}
1-cos(x_1,x_2)& \text{if, y=1}\\
max(0,cos(x_1,x_2)-margin)& \text{if, y=-1}\end{cases}
\]
\[cos(\theta)=\frac{A \cdot B}{||A||||b||}=\frac{\sum_{i=1}^{n}A_i\times B_i}{\sqrt{\sum_{i=1}^{n}(A_i)^2}\times \sqrt{\sum_{i=1}^{n}(B_i)^2}}
\]

18. nn.CTCLoss

功能:计算CTC损失,解决时序类数据的分类

Connetionist Temporal Classification

主要参数:

  • blank:blank label
  • zero_infinity:无穷大的值或梯度置0
  • reduction:计算模式,可为none,sum,mean
torch.nn.CTCLoss(blank=0,reduction='mean',zero_infinity=False)
import torch
import torch.nn as nn
import os
import matplotlib.pyplot as plt
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
torch.manual_seed(2)
# ===========================nn.L1Loss===========
# flag = True
flag = False
if flag:
x1_data = torch.ones((2, 2))
x1_label = torch.ones((2, 2)) * 3 loss1 = nn.L1Loss(reduction='none')
loss_data = loss1(x1_data, x1_label)
print("x1_data:{}\nx1_label:{}\nloss:{}".format(x1_data,x1_label,loss_data)) # ===========================nn.MSELoss===========
# flag = True
flag = False
if flag:
x1_data = torch.ones((2, 2))
x1_label = torch.ones((2, 2)) * -1 loss1 = nn.MSELoss(reduction='none')
loss_data = loss1(x1_data, x1_label)
print("x1_data:{}\nx1_label:{}\nloss:{}".format(x1_data,x1_label,loss_data)) # ===========================nn.SmoothLoss===========
# flag = True
flag = False
if flag:
x1_data = torch.linspace(-3, 3, steps=1000)
x1_label = torch.zeros_like(x1_data) lossmoth1 = nn.SmoothL1Loss(reduction='none')
loss_datamoth1 = lossmoth1(x1_data, x1_label) loss1 = nn.L1Loss(reduction='none')
loss_data = loss1(x1_data, x1_label) plt.plot(x1_data.numpy(), loss_data.numpy(), label='L1Loss')
plt.plot(x1_data.numpy(), loss_datamoth1.numpy(), label='SmoothL1Loss')
plt.xlabel('xi-yi')
plt.ylabel('loss value')
plt.legend()
plt.grid()
plt.show() # ===========================nn.PoissonNLLLoss===========
# flag = True
flag = False
if flag:
x1_data = torch.randn((2, 2))
x1_label = torch.randn((2, 2))*2+0.6 loss1 = nn.PoissonNLLLoss(log_input=False, reduction='none',eps=1e-02)
loss_data = loss1(x1_data, x1_label) print(x1_data)
print(x1_label)
print(loss_data) # computebyhan = torch.exp(x1_data)-x1_label*x1_data
# print(computebyhan) computebyhan1 = x1_data - x1_label*torch.log(x1_data+1e-02)
print(computebyhan1) # ===========================nn.KLDivLoss===========
# flag = True
flag = False
if flag:
x1_data = torch.tensor([[0.5, 0.4, 0.1], [0.2, 0.4, 0.4], [0.1, 0.5, 0.4], [0.1, 0.8, 0.1]])
x1_datalog = torch.log(x1_data)
x1_label = torch.tensor([[0.7, 0.2, 0.1], [0.1, 0.4, 0.5], [0.4, 0.2, 0.4], [0.3, 0.4, 0.3]],dtype=torch.float) lossd = nn.KLDivLoss(reduction='none')
loss_data = lossd(x1_data, x1_label)
print(loss_data) ln = x1_label*(torch.log(x1_label)-x1_data)
print(ln) # ===========================nn.MarginRankingLoss===========
# flag = True
flag = False
if flag:
x1 = torch.tensor([[1], [2], [3]], dtype=torch.float)
x2 = torch.tensor([[2], [2], [2]], dtype=torch.float) labeld = torch.tensor([1, 1, -1], dtype=torch.float) loss_f = nn.MarginRankingLoss(margin=0, reduction='none') loss = loss_f(x1, x2, labeld)
print(loss) # ===========================nn.MultiLabelMarginLoss===========
# flag = True
flag = False
if flag:
x = torch.tensor([[0.4, 02., 0.4, 0.5]])
y = torch.tensor([[0, 3, -1, -1]], dtype=torch.long) lossf = nn.MultiLabelMarginLoss(reduction='none')
loss = lossf(x, y) print(loss) x = x[0]
item1 = (1 - (x[0]-x[1]))+(1-(x[0]-x[2]))
item2 = (1 - (x[3]-x[1]))+(1-(x[3]-x[2]))
loss2 = (item1+item2)/4
print(loss2) # ===========================nn.SoftMarginLoss===========
# flag = True
flag = False
if flag:
x = torch.tensor([[0.4, 0.6], [0.8, 0.2]])
y = torch.tensor([[-1, 1], [1, -1]], dtype=torch.long) lossf = nn.SoftMarginLoss(reduction='none')
loss = lossf(x, y) print(loss) idx = 0
itemx = x[idx, idx]
itemy = y[idx, idx]
loss = torch.log(1+torch.exp(-itemy*itemx))
print(loss) # ===========================nn.MultiLabelSoftMarginLoss===========
# flag = True
flag = False
if flag:
x = torch.tensor([[0.4, 0.6, 0.8, 0.2]])
y = torch.tensor([[0, 1, 1, 0]], dtype=torch.long) lossf = nn.MultiLabelSoftMarginLoss(reduction='none')
loss = lossf(x, y) print(loss) sum=0
for i in range(4):
if(y[0,i]==1):
sum+=y[0, i]*torch.log((1+torch.exp(-x[0,i]))**(-1))
else:
sum+=torch.log(torch.exp(-x[0,i])/(1+torch.exp(-x[0,i])))
sum=sum/4
print(sum) # ===========================nn.MultiMarginLoss===========
# ---------------------------------------------- 14 Multi Margin Loss -----------------------------------------
flag = 0
# flag = 1
if flag: x = torch.tensor([[0.1, 0.2, 0.7], [0.2, 0.5, 0.3]])
y = torch.tensor([1, 2], dtype=torch.long) loss_f = nn.MultiMarginLoss(reduction='none') loss = loss_f(x, y) print("Multi Margin Loss: ", loss) # --------------------------------- compute by hand
flag = 0
# flag = 1
if flag: x = x[0]
margin = 1 i_0 = margin - (x[1] - x[0])
# i_1 = margin - (x[1] - x[1])
i_2 = margin - (x[1] - x[2]) loss_h = (i_0 + i_2) / x.shape[0] print(loss_h) # ---------------------------------------------- 15 Triplet Margin Loss -----------------------------------------
# flag = 0
flag = 1
if flag:
anchor = torch.tensor([[1.]])
pos = torch.tensor([[2.]])
neg = torch.tensor([[0.5]]) lossd = nn.TripletMarginLoss(margin=1, p=1) loss = lossd(anchor, pos, neg)
print(loss) ap = abs(pos-anchor)
an = abs(anchor-neg)
l = ap-an+1
print(l) # ---------------------------------------------- 16 Hinge Embedding Loss -----------------------------------------
flag = 0
# flag = 1
if flag: inputs = torch.tensor([[1., 0.8, 0.5]])
target = torch.tensor([[1, 1, -1]]) loss_f = nn.HingeEmbeddingLoss(margin=1, reduction='none') loss = loss_f(inputs, target) print("Hinge Embedding Loss", loss) # --------------------------------- compute by hand
flag = 0
# flag = 1
if flag:
margin = 1.
loss = max(0, margin - inputs.numpy()[0, 2]) print(loss) # ---------------------------------------------- 17 Cosine Embedding Loss -----------------------------------------
flag = 0
# flag = 1
if flag: x1 = torch.tensor([[0.3, 0.5, 0.7], [0.3, 0.5, 0.7]])
x2 = torch.tensor([[0.1, 0.3, 0.5], [0.1, 0.3, 0.5]]) target = torch.tensor([[1, -1]], dtype=torch.float) loss_f = nn.CosineEmbeddingLoss(margin=0., reduction='none') loss = loss_f(x1, x2, target) print("Cosine Embedding Loss", loss) # --------------------------------- compute by hand
flag = 0
# flag = 1
if flag:
margin = 0. def cosine(a, b):
numerator = torch.dot(a, b)
denominator = torch.norm(a, 2) * torch.norm(b, 2)
return float(numerator/denominator) l_1 = 1 - (cosine(x1[0], x2[0])) l_2 = max(0, cosine(x1[0], x2[0])) print(l_1, l_2)

pytorch(16)损失函数(二)的更多相关文章

  1. PyTorch专栏(二)

    专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60min入门 PyTorch 入门 PyTorch 自动微分 PyTorch 神经 ...

  2. 《Java大学教程》—第16章 二维数组

    多维(Multi-dimensional)数组维数由索引个数决定.常用的数组:一维(one-dimensional)数组.二维(two-dimensional)数组 16.2    创建二维数组索引从 ...

  3. pytorch常用损失函数

    损失函数的基本用法: criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 得到的loss结果已经对min ...

  4. 莫烦pytorch学习笔记(二)——variable

    .简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...

  5. 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )

    CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...

  6. [深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)

    Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% ...

  7. pytorch实战(二)hw2——预测收入是否高于50000,分类问题

    代码和ppt: https://github.com/Iallen520/lhy_DL_Hw 遇到的一些细节问题: 1. X_train文件不带后缀名csv,所以不是规范的csv文件,不能直接用pd. ...

  8. Pytorch系列:(二)数据加载

    DataLoader DataLoader(dataset,batch_size=1,shuffle=False,sampler=None, batch_sampler=None,num_worker ...

  9. 数据结构与算法16—平衡二叉(AVL)树

    我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定.但是,在某些极端的情况下(如在 ...

  10. Day 16 之二 省市县三级联动

    摘录自:雨神,供参考! province_dic = { "河北": { "石家庄": ["鹿泉", "藁城", &qu ...

随机推荐

  1. 【bzoj 1202】[HNOI2005] 狡猾的商人(图论--带权并查集+前缀和)

    题意:一个账本记录了N个月以来的收入情况,现在有一个侦探员不同时间偷看到M段时间内的总收入,问这个账本是否为假账. 解法:带权并查集+前缀和.   判断账本真假是通过之前可算到的答案与当前读入的值是否 ...

  2. 【poj 1988】Cube Stacking(图论--带权并查集)

    题意:有N个方块,M个操作{"C x":查询方块x上的方块数:"M x y":移动方块x所在的整个方块堆到方块y所在的整个方块堆之上}.输出相应的答案. 解法: ...

  3. F - Count the Colors(线段树)

    Painting some colored segments on a line, some previously painted segments may be covered by some th ...

  4. HDU -1506 Largest Rectangle in a Histogram&&51nod 1158 全是1的最大子矩阵 (单调栈)

    单调栈和队列讲解:传送门 HDU -1506题意: 就是给你一些矩形的高度,让你统计由这些矩形构成的那个矩形面积最大 如上图所示,如果题目给出的全部是递增的,那么就可以用贪心来解决 从左向右依次让每一 ...

  5. Linux系统编程【2】——编写who命令

    学到的知识点 通过实现who命令,学到了: 1.使用man命令寻找相关信息 2.基于文件编程 3.体会到c库函数与系统调用的不同 4.加深对缓冲技术的理解 who命令的作用 who命令的使用 在控制终 ...

  6. 在QT C++中调用 Python并将软件打包发布(裸机可运行)

    为了提高工作效率,需要一个可以自动生成多份相关联的word文档免去繁琐复制粘贴工作的软件.最后选定使用QT C++做界面和主要逻辑程序设计,对word的操作使用python写好对应的函数,然后在QT中 ...

  7. JavaScript预编译过程理解

    1-JavaScript运行三部曲 语法分析 预编译 解释执行 语法分析很简单,就是引擎检查你的代码有没有什么低级的语法错误: 解释执行顾名思义便是执行代码了: 预编译简单理解就是在内存中开辟一些空间 ...

  8. CodeForces 1047C Enlarge GCD(数论)题解

    题意:n个数的gcd是k,要你删掉最少的数使得删完后的数组的gcd > k 思路:先求出k,然后每个数除以k.然后找出出现次数最多的质因数即可. 代码: #include<cmath> ...

  9. Java中Class.forName()用法和newInstance()方法详解

    1.Class.forName()主要功能 Class.forName(xxx.xx.xx)返回的是一个类, Class.forName(xxx.xx.xx)的作用是要求JVM查找并加载指定的类,也就 ...

  10. Apple Watch Series 6 编织表带如何清洗

    Apple Watch Series 6 编织表带如何清洗 如何清洁 Apple Watch https://support.apple.com/zh-cn/HT204522 refs xgqfrms ...