落谷 P1410 子序列
题目链接。
Discription
给定长度为 \(n\) 的序列 \(A\)(\(n\) 为偶数),判断是否能将其划分为两个长度为 \(\dfrac{N}{2}\) 的严格递增子序列。
Solution
不妨按下标从小到大考虑每个数要分给哪一组,比较明显的 DP,朴素时空复杂度太高。
在朴素中,我们需要知道四个信息:
- 第一组的长度
- 第一组最后一个数的数值
- 第二组的长度
- 第二组最后一个数的长度
- 由于所有数都得填,所以当填完前 \(i\) 个数的时候,肯定有一组的末尾是 \(A[i]\),可以降一个维度
- 考虑把可行性 DP,把一个状态,用贪心最优性搞在状态里,这题的最后一个数的数值显然越小越好(容错率越高)。
这样状态数量就在两维了,每次转移其实就是考虑这个数到两个组中的哪一个,应该是可以接受的。
状态设计
设 \(f_{i, j}\) 为填完了前 \(i\) 个数,以 \(a[i]\) 结尾的那组长度为 \(j\),所能构成的另外一组最后一个数的的最小值。
状态转移
”我为人人“ 式转移可能更好理解:
- 考虑将 \(A[i + 1]\) 填入以 \(A[i]\) 结尾的组里,需要满足 $A[i] < A[i + 1] $,转移为 \(f_{i + 1, j + 1} = \min(f_{i, j})\)
- 将第 \(A[i + 1]\) 填入另一组组里,需要满足 \(f_{i, j} < A[i + 1]\),转移为 \(f_{i + 1, i - j + 1} = \min(A[i])\)
最后检测 \(f_{n, n / 2}\)是否等于无穷即可。
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 2005, INF = 0x3f3f3f3f;
int n, a[N], f[N][N >> 1];
int main() {
while (~scanf("%d", &n)) {
memset(f, 0x3f, sizeof f);
for (int i = 1; i <= n; i++) scanf("%d", a + i);
f[1][1] = -1;
for (int i = 1; i < n; i++) {
for (int j = 1; j * 2 <= n; j++) {
if (f[i][j] == INF) continue;
if (a[i] < a[i + 1]) f[i + 1][j + 1] = min(f[i + 1][j + 1], f[i][j]);
if (f[i][j] < a[i + 1]) f[i + 1][i - j + 1] = min(f[i + 1][i - j + 1], a[i]);
}
}
puts(f[n][n / 2] != INF ? "Yes!" : "No!");
}
return 0;
}
落谷 P1410 子序列的更多相关文章
- 洛谷P1410 子序列
题目描述 给定一个长度为N(N为偶数)的序列,问能否将其划分为两个长度为N/2的严格递增子序列, 输入输出格式 输入格式: 若干行,每行表示一组数据.对于每组数据,首先输入一个整数N,表示序列的长度. ...
- 洛谷 P1410 子序列(DP)
这题的题解的贪心都是错误的...正解应该是个DP 考虑有哪些有关的条件:两个序列的当前长度, 两个序列的末尾数, 把这些都压进状态显然是会GG的 考虑两个长度加起来那一位的数一定是其中一个序列的末尾, ...
- (luogu P1410)子序列 [TPLY]
子序列 题目链接:https://www.luogu.org/problemnew/show/P1410 吐槽: 这道题做得我心累 本来想好好练一练dp 刷刷水题来练练手感 于是乎打开了(普及+/提高 ...
- Luogu P1410 子序列
题目大意: 给定一个长度为\(N\)(\(N\)为偶数)的序列,] 问能否将其划分为两个长度为\(\frac{N}{2}\)的严格递增子序列, 输入一共有\(50\)组数据,每组数据保证\(N \le ...
- 【Luogu】P1410子序列(DP)
题目链接 我DP是真的菜啊啊啊啊啊! f[i][j]表示考虑前i个数,有i-j+1个数组成一个上升子序列,且不以i结尾的尾端最小值. 设a为j个数组成的序列,且以i结尾:b为i-j+1个数组成的序列, ...
- P1410 子序列 (动态规划)
题目描述 给定一个长度为N(N为偶数)的序列,问能否将其划分为两个长度为N/2的严格递增子序列. 输入输出格式 输入格式: 若干行,每行表示一组数据.对于每组数据,首先输入一个整数N,表示序列的长度. ...
- 洛谷 [T21776] 子序列
题目描述 你有一个长度为 \(n\) 的数列 \(\{a_n\}\) ,这个数列由 \(0,1\) 组成,进行 \(m\) 个的操作: \(1\ l\ r\) :把数列区间$ [l,r]$ 内的所有数 ...
- P1410 子序列
题目描述 给定一个长度为N(N为偶数)的序列,问能否将其划分为两个长度为N/2的严格递增子序列, 输入输出格式 输入格式: 若干行,每行表示一组数据.对于每组数据,首先输入一个整数N,表示序列的长度. ...
- 洛谷T21776 子序列
题目描述 你有一个长度为 nn 的数列 \{a_n\}{an} ,这个数列由 0,10,1 组成,进行 mm 个的操作: 1~l~r1 l r :把数列区间 [l, r][l,r] 内的所有数取反. ...
随机推荐
- MYSQL 存储引擎(面)
存储引擎是MySQL的组件,用于处理不同表类型的SQL操作.不同的存储引擎提供不同的存储机制.索引技巧.锁定水平等功能,使用不同的存储引擎,还可以获得特定的功能. 使用哪一种引擎可以灵活选择,一个数据 ...
- putty连接Linux(NAT)
1.系统装好后第一次连的时候需要打开ssh服务 sudo apt-get install openssh-server 当在机器不能通过ping ip相通的话那么就要解决ip不同的问题,当ip相通还是 ...
- 状态模式(Established close)
状态模式(Established close) 引子 铁扇公主:以前陪我看月亮的时候,叫人家小甜甜,现在新人胜旧人了,叫人家牛夫人! 定义 Allow an object to alter its b ...
- sqlilab less28 less28a
less-28 less-28a 二者相差不大 单引号小括号包裹,黑名单过滤--,#,空格,union空格select(不区分大小写) less-28的黑名单 less-28a的黑名单 %a0,不被 ...
- sql字段长度等于
select count(*) from boc_loan_apply where length(birthday)=7;
- 神秘、常用、多变的Binder
今天说说神秘又常用又多变的Binder~ Binder是什么 Binder通信过程和原理 在Android中的应用 Binder优势 Binder是什么 先借用神书<Android开发艺术探索& ...
- 如何使用Camtasia进行电脑录制屏幕
在现在的网络互联网时代,越来越多的人走上了自媒体的道路.有些自媒体人会自己在网络上录制精彩视频,也有一些人会将精彩.热门的电影剪辑出来再加上自己给它的配音,做成大家喜欢看的电影剪辑片段.相信不管大家是 ...
- 利用css3和js实现旋转木马图片小demo
先看效果图: 上源码 html代码 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...
- thinkPHP 无法加载控制器:Hello
出现这种问题的情况下要看看: (1).控制器的名称是否写对,控制器的命名规范(别忘下class) 控制器的命名规则1.必须采用大驼峰的命名规则2.必须以Controller.class.php来结尾I ...
- exgcd 学习笔记
最大公约数 更相减损术:\(\gcd(x,y)=\gcd(x,y-x)(x\leq y)\). 证明: 设 \(\gcd(x,y)=k\),则 \(x=kp,y=kq,\gcd(p,q)=1\). 那 ...