落谷 P1410 子序列
题目链接。
Discription
给定长度为 \(n\) 的序列 \(A\)(\(n\) 为偶数),判断是否能将其划分为两个长度为 \(\dfrac{N}{2}\) 的严格递增子序列。
Solution
不妨按下标从小到大考虑每个数要分给哪一组,比较明显的 DP,朴素时空复杂度太高。
在朴素中,我们需要知道四个信息:
- 第一组的长度
- 第一组最后一个数的数值
- 第二组的长度
- 第二组最后一个数的长度
- 由于所有数都得填,所以当填完前 \(i\) 个数的时候,肯定有一组的末尾是 \(A[i]\),可以降一个维度
- 考虑把可行性 DP,把一个状态,用贪心最优性搞在状态里,这题的最后一个数的数值显然越小越好(容错率越高)。
这样状态数量就在两维了,每次转移其实就是考虑这个数到两个组中的哪一个,应该是可以接受的。
状态设计
设 \(f_{i, j}\) 为填完了前 \(i\) 个数,以 \(a[i]\) 结尾的那组长度为 \(j\),所能构成的另外一组最后一个数的的最小值。
状态转移
”我为人人“ 式转移可能更好理解:
- 考虑将 \(A[i + 1]\) 填入以 \(A[i]\) 结尾的组里,需要满足 $A[i] < A[i + 1] $,转移为 \(f_{i + 1, j + 1} = \min(f_{i, j})\)
- 将第 \(A[i + 1]\) 填入另一组组里,需要满足 \(f_{i, j} < A[i + 1]\),转移为 \(f_{i + 1, i - j + 1} = \min(A[i])\)
最后检测 \(f_{n, n / 2}\)是否等于无穷即可。
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 2005, INF = 0x3f3f3f3f;
int n, a[N], f[N][N >> 1];
int main() {
while (~scanf("%d", &n)) {
memset(f, 0x3f, sizeof f);
for (int i = 1; i <= n; i++) scanf("%d", a + i);
f[1][1] = -1;
for (int i = 1; i < n; i++) {
for (int j = 1; j * 2 <= n; j++) {
if (f[i][j] == INF) continue;
if (a[i] < a[i + 1]) f[i + 1][j + 1] = min(f[i + 1][j + 1], f[i][j]);
if (f[i][j] < a[i + 1]) f[i + 1][i - j + 1] = min(f[i + 1][i - j + 1], a[i]);
}
}
puts(f[n][n / 2] != INF ? "Yes!" : "No!");
}
return 0;
}
落谷 P1410 子序列的更多相关文章
- 洛谷P1410 子序列
题目描述 给定一个长度为N(N为偶数)的序列,问能否将其划分为两个长度为N/2的严格递增子序列, 输入输出格式 输入格式: 若干行,每行表示一组数据.对于每组数据,首先输入一个整数N,表示序列的长度. ...
- 洛谷 P1410 子序列(DP)
这题的题解的贪心都是错误的...正解应该是个DP 考虑有哪些有关的条件:两个序列的当前长度, 两个序列的末尾数, 把这些都压进状态显然是会GG的 考虑两个长度加起来那一位的数一定是其中一个序列的末尾, ...
- (luogu P1410)子序列 [TPLY]
子序列 题目链接:https://www.luogu.org/problemnew/show/P1410 吐槽: 这道题做得我心累 本来想好好练一练dp 刷刷水题来练练手感 于是乎打开了(普及+/提高 ...
- Luogu P1410 子序列
题目大意: 给定一个长度为\(N\)(\(N\)为偶数)的序列,] 问能否将其划分为两个长度为\(\frac{N}{2}\)的严格递增子序列, 输入一共有\(50\)组数据,每组数据保证\(N \le ...
- 【Luogu】P1410子序列(DP)
题目链接 我DP是真的菜啊啊啊啊啊! f[i][j]表示考虑前i个数,有i-j+1个数组成一个上升子序列,且不以i结尾的尾端最小值. 设a为j个数组成的序列,且以i结尾:b为i-j+1个数组成的序列, ...
- P1410 子序列 (动态规划)
题目描述 给定一个长度为N(N为偶数)的序列,问能否将其划分为两个长度为N/2的严格递增子序列. 输入输出格式 输入格式: 若干行,每行表示一组数据.对于每组数据,首先输入一个整数N,表示序列的长度. ...
- 洛谷 [T21776] 子序列
题目描述 你有一个长度为 \(n\) 的数列 \(\{a_n\}\) ,这个数列由 \(0,1\) 组成,进行 \(m\) 个的操作: \(1\ l\ r\) :把数列区间$ [l,r]$ 内的所有数 ...
- P1410 子序列
题目描述 给定一个长度为N(N为偶数)的序列,问能否将其划分为两个长度为N/2的严格递增子序列, 输入输出格式 输入格式: 若干行,每行表示一组数据.对于每组数据,首先输入一个整数N,表示序列的长度. ...
- 洛谷T21776 子序列
题目描述 你有一个长度为 nn 的数列 \{a_n\}{an} ,这个数列由 0,10,1 组成,进行 mm 个的操作: 1~l~r1 l r :把数列区间 [l, r][l,r] 内的所有数取反. ...
随机推荐
- 可变参数以及stdcall
void event_warnx(const char *fmt, ...) EV_CHECK_FMT(1,2); #define EV_CHECK_FMT(a,b) __attribute__((f ...
- PyQt5播放实时视频流或本地视频文件
目录 编辑UI 新建视频播放类Display 打开相机 关闭相机 显示视频画面 完整源代码 效果图 编辑UI 编辑UI如下图所示: 新建视频播放类Display 定义如下初始化函数 def __ini ...
- UNP——第二章,端口号,套接字对,TCP,UDP输出
1.端口号 端口号用于区分使用相同协议的进程. TCP69 与 UDP69 是不同的. 端口号范围 0 - 65535, 其中 0- 1023 是保留端口. 2.套接字对 TCP服务通过套接字对,唯一 ...
- DevOps,你真的了解吗?
与大数据和PRISM(NSA的监控项目之一),DevOps(开发运维)如今是科技人士挂在嘴边的热词,但遗憾的是,类似圣经,每个人都引用DevOps的只言片语,但真正理解并能执行的人极少.根据CA的一项 ...
- 基于Opencv识别,矫正二维码(C++)
参考链接 [ 基于opencv 识别.定位二维码 (c++版) ](https://www.cnblogs.com/yuanchenhui/p/opencv_qr.html) OpenCV4.0.0二 ...
- 怎么用MindManager制作议论文思维导图
大家都写过作文吧,做小学到高考到大学,这是谁也摆脱不了的,但是大家写作文会提前把自己的思路整理出来吗?让自己行文更为顺畅,作文更为流利吗?特别是关于议论文,一直是高考写作的一个重点篇目,写好议论文,就 ...
- 什么是NTFS文件格式
说到磁盘格式,想必大家对于NTFS格式并不陌生.我们使用的u盘等硬盘设备很多都应用了此格式.NTFS文件格式究竟是什么?它都有哪些特点?今天,小编将利用这篇文章为大家进行介绍. 一.什么是NTFS文件 ...
- 【ACwing 98】分形之城——分形
(题面来自ACwing) 城市的规划在城市建设中是个大问题. 不幸的是,很多城市在开始建设的时候并没有很好的规划,城市规模扩大之后规划不合理的问题就开始显现. 而这座名为 Fractal 的城市设想了 ...
- Leetcode 周赛#202 题解
本周的周赛题目质量不是很高,因此只给出最后两题题解(懒). 1552 两球之间的磁力 #二分答案 题目链接 题意 有n个空篮子,第i个篮子位置为position[i],现希望将m个球放到这些空篮子,使 ...
- HEXO & CARDS主题进阶配置
我想对于建立一个网站而言,第一步要能够做到正常在线访问以及定期产出一定的内容, 其实当网站建立好那一刻,这第一步已经算是完成了,不过我在此基础之上做了些扩展 在默认的card主题之上,我设置了标签.分 ...