pytorch和tensorflow的爱恨情仇之一元线性回归例子(keras插足啦)
直接看代码:
一、tensorflow
#tensorflow
import tensorflow as tf
import random
import numpy as np x_data = np.random.randn(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1])) y = weights * x_data + biases
losses = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(losses) init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for step in range(10):
sess.run(train)
print(step, sess.run(weights), sess.run(biases))
2、pytorch
#pytorch
import torch
import numpy as np x_data = np.random.randn(100).astype(np.float32)
y_data = x_data * 0.3 + 0.1
x_data = torch.from_numpy(x_data)
y_data = torch.from_numpy(y_data) weights = torch.rand(1,requires_grad=True)
biases = torch.zeros(1,requires_grad=True)
print("初始参数weights:{}, biases:{}".format(weights.data, biases.data))
parameters = [weights, biases] criterion = torch.nn()
optimizer = torch.optim.SGD(parameters, 0.5)
for i in range(10):
y = weights * x_data + biases
losses = criterion(y_data, y)
print(losses.data, weights.data, biases.data)
optimizer.zero_grad()
losses.backward()
optimizer.step()
三、keras
#keras
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
import numpy as np x_data = np.random.randn(100).astype(np.float32)
y_data = x_data * 0.3 + 0.1 model = Sequential() model.add(Dense(input_dim=1, units=1)) model.compile(loss="mse", optimizer=SGD(lr=0.5))
for i in range(10):
losses = model.train_on_batch(x_data, y_data)
w, b = model.get_weights()
print(losses, w, b)
接下来我们再细说他们各自的一些异同:
不同点:
- pytorch要求输入的是tensor,而tensorflow和keras可以是numpy;
- tensorflow1.x是静态图,我们可以先定义好相关的操作,然后在session中执行即可;pytorch使用的是动态图,我们要在循环的过程中计算相关的损失;keras封装的更高级,只需要像model.compile()中传入损失函数以及优化方法,我们不用显示计算;
- tensorflow要求在定义好计算图之后,在Session()执行图上的计算操作;
- tensorflow初始化参数的时候是定义一个tf.initialize_all_variables(),然后在session中首先执行初始化操作:sess.run(init);pytorch是将相关的参数封装成一个列表,然后传入给优化器;至于keras(我知道的是使用Sequential()来构建模型,不知道有没有自定义的参数实现,不使用类);
- tensorflow使用optimizer.minimize(losses)来最小化损失,pytorch使用loss.backward(),optimizer.step(),实质都是使用反像传播算法不断优化参数使得损失最小化;keras直接使用model.train_on_batch()即可;
相同点:
- 总体思路是一致的:输入数据---》定义参数--》计算损失--》定义优化器--》循环迭代,最小化损失。
总结:这只是一个简单的对比,但是这么一套流程,就可以套用到各种神经网络中了,只是数据的处理、网络结构的搭建等不同。
pytorch和tensorflow的爱恨情仇之一元线性回归例子(keras插足啦)的更多相关文章
- pytorch和tensorflow的爱恨情仇之基本数据类型
自己一直以来都是使用的pytorch,最近打算好好的看下tensorflow,新开一个系列:pytorch和tensorflow的爱恨情仇(相爱相杀...) 无论学习什么框架或者是什么编程语言,最基础 ...
- pytorch和tensorflow的爱恨情仇之定义可训练的参数
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch版本:1.6.0 tensorflow版本:1.15.0 之前我们就已 ...
- pytorch和tensorflow的爱恨情仇之张量
pytorch和tensorflow的爱恨情仇之基本数据类型:https://www.cnblogs.com/xiximayou/p/13759451.html pytorch版本:1.6.0 ten ...
- pytorch和tensorflow的爱恨情仇之参数初始化
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本 ...
- Menu与ActionBar的爱恨情仇
最近在开发一款音乐播放器,在开发过程中遇到了一点小麻烦,通过android API搞清楚了Menu与ActionBar的爱恨情仇,写了个小Demo祭奠一下那些年我们陷进去的坑,有不对的地方请大神们批评 ...
- web移动端fixed布局和input等表单的爱恨情仇 - 终极BUG,完美解决
[问题]移动端开发,ios下当fixed属性和输入框input(这里不限于input,只要可以调用移动端输入法的都包括,如:textarea.HTML5中contenteditable等),同时存在的 ...
- 注解:大话AOP与Android的爱恨情仇
转载:大话AOP与Android的爱恨情仇 1. AOP与OOP的区别 平时我接触多的就是OOP(Object Oriented Programming面向对象).AOP(Aspect Oriente ...
- 除了love和hate,还能怎么表达那些年的“爱恨情仇”?
实用英语 帮你全面提高英语水平 关注 童鞋们每次刷美剧的时候,相信都会被CP感满满的男女主角虐得体无完肤吧. 可是,一到我们自己表达爱意或者恨意的时候,却苦于词穷,只会用love, like, hat ...
- 对json的爱恨情仇
本文回想了对json的爱恨情仇. C++有风险,使用需慎重. 本文相关代码在:http://download.csdn.net/detail/baihacker/7862785 当中的測试数据不在里面 ...
随机推荐
- Spark SQL | 目前Spark社区最活跃的组件之一
Spark SQL是一个用来处理结构化数据的Spark组件,前身是shark,但是shark过多的依赖于hive如采用hive的语法解析器.查询优化器等,制约了Spark各个组件之间的相互集成,因此S ...
- CorelDRAW 条形码改不了字体如何解决?
看到有朋友提问说CorelDRAW条码生成设置里面的字体不能更改,是灰色的,不能选择.这个默认字体怎么改? 出现问题:条码生成设置里面的字体不能更改,是灰色的,不能选择. 解决方法一:找到C盘字体文件 ...
- 循序渐进VUE+Element 前端应用开发(29)--- 高级查询条件的界面设计
在系统模块中的业务列表展示里面,一般我们都会在列表中放置一些查询条件,如果是表字段不多,大多数情况下,放置的条件有十个八个就可以了,如果是字段很多,而这些条件信息也很关键的时候,就可能放置很多条件,但 ...
- 使用ES替代whoosh全文检索
目录 1.docker安装ES 1.拉取docker镜像 2.使用docker安装ES 3.在页面中测试 2.使用ES替代whoosh全文检索 2.1 在Django中修改搜索引擎为ES 2.2 命令 ...
- 【Vue】VUE源码中的一些工具函数
Vue源码-工具方法 /* */ //Object.freeze()阻止修改现有属性的特性和值,并阻止添加新属性. var emptyObject = Object.freeze({}); // th ...
- C语言讲义——运算符(operator)
运算符(operator) 算数运算符 7种 关系运算符 6种 逻辑运算符 3种 位运算符 6种 赋值运算符 11种 共5类33种 算术运算符 加 + 减 - 乘 * 除 / 取余 % (仅限于整数类 ...
- Eclipse中自动生成局部变量
方法调用后,返回值自动赋值到一个新的局部变量中: (1)鼠标放到方法上,点击Ctrl+1 (2)选择 :Assign statement to new local variable(将语句赋给新的局部 ...
- 三. Vue组件化
1. 认识组件化 1.1 什么是组件化 人面对复杂问题的处理方式 任何一个人处理信息的逻辑能力都是有限的,所以当面对一个非常复杂的问题时我们不太可能一次性搞定一大堆的内容. 但是我们人有一种天生的能力 ...
- 学Python,只有不到15%的同学会成功
我给大家唱首歌:<坚持的意义> 你看过了许多书籍 你看过了许多视频 你迷失在屏幕上每一道短暂的光阴 你品尝了代码的糟心 你踏过算法的荆棘 你熟记书本里每一段你最爱的公式 却说不出你爱Pyt ...
- Java数据结构(十二)—— 霍夫曼树及霍夫曼编码
霍夫曼树 基本介绍和创建 基本介绍 又称哈夫曼树,赫夫曼树 给定n个权值作为n个叶子节点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称为最优二叉树 霍夫曼树是带权路径长度最短的树,权值较 ...