直接看代码:

一、tensorflow

#tensorflow
import tensorflow as tf
import random
import numpy as np x_data = np.random.randn(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1])) y = weights * x_data + biases
losses = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(losses) init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for step in range(10):
sess.run(train)
print(step, sess.run(weights), sess.run(biases))

2、pytorch

#pytorch
import torch
import numpy as np x_data = np.random.randn(100).astype(np.float32)
y_data = x_data * 0.3 + 0.1
x_data = torch.from_numpy(x_data)
y_data = torch.from_numpy(y_data) weights = torch.rand(1,requires_grad=True)
biases = torch.zeros(1,requires_grad=True)
print("初始参数weights:{}, biases:{}".format(weights.data, biases.data))
parameters = [weights, biases] criterion = torch.nn()
optimizer = torch.optim.SGD(parameters, 0.5)
for i in range(10):
y = weights * x_data + biases
losses = criterion(y_data, y)
print(losses.data, weights.data, biases.data)
optimizer.zero_grad()
losses.backward()
optimizer.step()

三、keras

#keras
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
import numpy as np x_data = np.random.randn(100).astype(np.float32)
y_data = x_data * 0.3 + 0.1 model = Sequential() model.add(Dense(input_dim=1, units=1)) model.compile(loss="mse", optimizer=SGD(lr=0.5))
for i in range(10):
losses = model.train_on_batch(x_data, y_data)
w, b = model.get_weights()
print(losses, w, b)

接下来我们再细说他们各自的一些异同:

不同点:

  • pytorch要求输入的是tensor,而tensorflow和keras可以是numpy;
  • tensorflow1.x是静态图,我们可以先定义好相关的操作,然后在session中执行即可;pytorch使用的是动态图,我们要在循环的过程中计算相关的损失;keras封装的更高级,只需要像model.compile()中传入损失函数以及优化方法,我们不用显示计算;
  • tensorflow要求在定义好计算图之后,在Session()执行图上的计算操作;
  • tensorflow初始化参数的时候是定义一个tf.initialize_all_variables(),然后在session中首先执行初始化操作:sess.run(init);pytorch是将相关的参数封装成一个列表,然后传入给优化器;至于keras(我知道的是使用Sequential()来构建模型,不知道有没有自定义的参数实现,不使用类);
  • tensorflow使用optimizer.minimize(losses)来最小化损失,pytorch使用loss.backward(),optimizer.step(),实质都是使用反像传播算法不断优化参数使得损失最小化;keras直接使用model.train_on_batch()即可;

相同点:

  • 总体思路是一致的:输入数据---》定义参数--》计算损失--》定义优化器--》循环迭代,最小化损失。

总结:这只是一个简单的对比,但是这么一套流程,就可以套用到各种神经网络中了,只是数据的处理、网络结构的搭建等不同。

pytorch和tensorflow的爱恨情仇之一元线性回归例子(keras插足啦)的更多相关文章

  1. pytorch和tensorflow的爱恨情仇之基本数据类型

    自己一直以来都是使用的pytorch,最近打算好好的看下tensorflow,新开一个系列:pytorch和tensorflow的爱恨情仇(相爱相杀...) 无论学习什么框架或者是什么编程语言,最基础 ...

  2. pytorch和tensorflow的爱恨情仇之定义可训练的参数

    pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch版本:1.6.0 tensorflow版本:1.15.0 之前我们就已 ...

  3. pytorch和tensorflow的爱恨情仇之张量

    pytorch和tensorflow的爱恨情仇之基本数据类型:https://www.cnblogs.com/xiximayou/p/13759451.html pytorch版本:1.6.0 ten ...

  4. pytorch和tensorflow的爱恨情仇之参数初始化

    pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本 ...

  5. Menu与ActionBar的爱恨情仇

    最近在开发一款音乐播放器,在开发过程中遇到了一点小麻烦,通过android API搞清楚了Menu与ActionBar的爱恨情仇,写了个小Demo祭奠一下那些年我们陷进去的坑,有不对的地方请大神们批评 ...

  6. web移动端fixed布局和input等表单的爱恨情仇 - 终极BUG,完美解决

    [问题]移动端开发,ios下当fixed属性和输入框input(这里不限于input,只要可以调用移动端输入法的都包括,如:textarea.HTML5中contenteditable等),同时存在的 ...

  7. 注解:大话AOP与Android的爱恨情仇

    转载:大话AOP与Android的爱恨情仇 1. AOP与OOP的区别 平时我接触多的就是OOP(Object Oriented Programming面向对象).AOP(Aspect Oriente ...

  8. 除了love和hate,还能怎么表达那些年的“爱恨情仇”?

    实用英语 帮你全面提高英语水平 关注 童鞋们每次刷美剧的时候,相信都会被CP感满满的男女主角虐得体无完肤吧. 可是,一到我们自己表达爱意或者恨意的时候,却苦于词穷,只会用love, like, hat ...

  9. 对json的爱恨情仇

    本文回想了对json的爱恨情仇. C++有风险,使用需慎重. 本文相关代码在:http://download.csdn.net/detail/baihacker/7862785 当中的測试数据不在里面 ...

随机推荐

  1. NO.A.0004——Git私有服务器部署/makefile方式/本地与Git服务器代码交换

    一.在linux服务器上搭建私有Git服务程序:make编译方式 远程仓库实际上和本地仓库没啥不同,纯粹为了7x24小时开机并交换大家的修改.GitHub就是一个免费托管开源代码的远程仓库.但是对于某 ...

  2. .NET可视化权限功能界面设计

    权限功能是信息系统不可或缺的重要部分,一个优秀的权限设计可以使开发工作事半功倍,给使用者带来良好的使用体验. 企业做生意,都会聘请员工,若是员工数量较多,"权限管理"必不可少,这样 ...

  3. 对于final修饰的类型运算时的表现

    我们知道,对于byte,char,这些数据类型加减时都会转化成int在运算,然而,对于final修饰过的数据是不会发生转换的. 比如说 byte b1=1; byte b2=2; byte b3=b1 ...

  4. [教程] Android Native内存泄漏检测方法

    转载请注明出处:https://www.cnblogs.com/zzcperf/p/9563389.html Android 检测 C/C++内存泄漏的方法越来越简便了,下面列举一下不同场景下检测C/ ...

  5. 使用github actions 完成一些自动化工作

    github actions 是什么? github actions是github的持续集成及自动化工作流服务,使用起来都比较方便.大部分github actions都可以在https://githu ...

  6. matlab中实现 IEEE754浮点数 与 一般十进制数之间 互相转换的方法

    ------------恢复内容开始------------ %2020/12/2 11:42:31clcformat long % IEEE754 to deca = '40800000'a = d ...

  7. 软件工程与UML第二次作业

    博客班级 https://edu.cnblogs.com/campus/fzzcxy/2018SE2/ 作业要求 https://edu.cnblogs.com/campus/fzzcxy/2018S ...

  8. 全文检索django-haystack+jieba+whoosh

    全文检索里的组件简介 1.什么是haystack? 1. haystack是django的开源搜索框架,该框架支持Solr,Elasticsearch,Whoosh, *Xapian*搜索引擎,不用更 ...

  9. moviepy音视频剪辑:moviepy中的剪辑基类Clip的属性和方法详解

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt+moviepy音视频剪辑实战 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一. ...

  10. PyQt(Python+Qt)学习随笔:QHeaderView.ResizeMode取值及含义

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 关于ResizeMode的使用请参考<PyQt(Python+Qt)学习随笔:QTableWi ...