前言:想了两个小时orz,最后才想到要用约数个数定理……

-------------

题目大意:

给定$n,q,A[1],A[2],A[3]$

现有$A[i]=(A[i-1]+A[i-2]+A[i-3])mod q$

求$(\sum_{i=1}^n \prod_{d|i} d^{A_i})mod10007$的值。

$n\leq 300000,q,A[1],A[2],A[3]\leq 10^{16}$。

------------------------

朴素算法是$O(n^2 \log n)$的,就算优化也是$O(n \sqrt n \log n)$,难以承受。

这时,我们注意到:

$ \prod_{d|i} d^{A_i}$

$=(\prod_{d|i} d)^{A_i}$

即$i$的所有因数的乘积的$A_{i}$次方。

我们设$f[i]$表示$i$的约数个数,因为因数是成对出现的,

那么有$\prod_{d|i} d=i^{f[i]/2}$(这里的$/$是计算机意义的)

若$i$为完全平方数,则结果还要乘$\sqrt i$。、

所以最后化简为:

$(\sum_{i=1}^n (i^{f[i]/2})^{A_i})mod10007$ $f[i]=2k$

$(\sum_{i=1}^n (i^{f[i]/2}*\sqrt i)^{A_i})mod10007$ $f[i]=2k+1$

$f[i]$可以用接近于线性的算法求得。时间复杂度$O(n\log n)$。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,q,a[],is[],f[],ans,prime[];
bool vis[];
void work()
{
vis[]=vis[]=;
for (int i=;i<=n;i++)
{
if (!vis[i]) prime[++prime[]]=i;
for (int j=;j<=prime[];j++)
{
if (i*prime[j]>n) break;
vis[i*prime[j]]=;
if (!(i%prime[j])) break;
}
}
}
int solve(int now)
{
int t=now,sum=,cnt=;
for (int j=;j<=prime[]&&prime[j]*prime[j]<=t;j++)
{
if (t%prime[j]==){
cnt=;
while(t%prime[j]==) cnt++,t/=prime[j];
sum=sum*(cnt+);
}
}
if (t>) sum<<=;
return sum;
}
int qpow(int a,int b)
{
a%=;
int res=;
while(b)
{
if (b%==) res=(res*a)%;
a=(a*a)%;
b>>=;
}
return res;
}
signed main()
{
cin>>n>>q>>a[]>>a[]>>a[];
work();
for (int i=;i*i<=n;i++) is[i*i]=i;
for (int i=;i<=n;i++)
a[i]=(a[i-]+a[i-]+a[i-])%q;
for (int i=;i<=n;i++){
f[i]=solve(i);
if (is[i]) ans=(ans+qpow(qpow(i,f[i]/)*is[i],a[i]))%;
else ans=(ans+qpow(qpow(i,f[i]/),a[i]))%;
}
cout<<ans;
return ;
}

【FZYZOJ】数论课堂 题解(约数个数定理)的更多相关文章

  1. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  2. 【搜索】【约数个数定理】[HAOI2007]反素数ant

    对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的 ...

  3. 【线性筛】【筛法求素数】【约数个数定理】URAL - 2070 - Interesting Numbers

    素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都 ...

  4. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  5. 【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors

    d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7) #include<cstdio> using namespace std; ...

  6. 数论专项测试——约数个数和(lucas的数论)

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. UVA - 294 Divisors【数论/区间内约数最多的数的约数个数】

    Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an int ...

  8. 【POJ1845】Sumdiv(数论/约数和定理/等比数列二分求和)

    题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\ ...

  9. 牛客:t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数(数论+贪心)

    https://ac.nowcoder.com/acm/contest/907/B t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数 分析: 根据约数和定理:对于一个大于1正整数 ...

随机推荐

  1. 从0开始,手把手教你开发并部署上线一个知识测验微信小程序

    上线项目演示 微信搜索[放马来答]或扫以下二维码体验: 项目源码 项目源码 其他版本 Vue答题App实战教程 Hello小程序 1.注册微信小程序 点击立即注册,选择微信小程序,按照要求填写信息 2 ...

  2. Django的Cookie Session和自定义分页

    cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...

  3. VSCode, 当今最流行的免费开源代码编辑器,微软出品,必属精品

    什么是VSCode? Visual Studio Code是一个轻量级但功能强大的源代码编辑器,可在您的桌面上运行,并且可用于Windows,macOS和Linux.它内置了对JavaScript,T ...

  4. 【Nginx】如何封禁IP和IP段?看完这篇我会了!!

    写在前面 Nginx不仅仅只是一款反向代理和负载均衡服务器,它还能提供很多强大的功能,例如:限流.缓存.黑白名单和灰度发布等等.在之前的文章中,我们已经介绍了Nginx提供的这些功能.小伙伴们可以到[ ...

  5. bzoj1661[Usaco2006 Nov]Big Square 巨大正方形*

    bzoj1661[Usaco2006 Nov]Big Square 巨大正方形 题意: n*n的图中有一些J点,一些B点和一些空白点,问在空白点添加一个J点所能得到的有4个J点组成最大正方形面积.n≤ ...

  6. js 分享QQ、QQ空间、微信、微博

    //分享QQ好友 function qq(title,url,pic) { var p = { url: 'http://test.qicheyitiao.com',/*获取URL,可加上来自分享到Q ...

  7. IDEA JRebel热部署( IDEA版本是2020.1.2)

    1.安装JRebel插件 在IDEA->Settings->plugins先安装JRebel插件: 2.下载工具 安装好JRebel后,找到lanyus大神文章中写的git地址:http: ...

  8. vue : 自定义脚手架提示

    做项目做烦了就想找点乐子. 比如,我们可以自定义脚手架提示.  webpack.dev.conf.js  54-78 行 module.exports = new Promise((resolve, ...

  9. MultipartFile

    转发:原博客 一.MultipartFile是什么? MultipartFile是一个接口并继承了InputStreamSource接口.MockMultipartFile.CommonsMultip ...

  10. Java中的大数值使用

    在Java中,偶尔会遇到超大数值,超出了已有的int,double,float等等你已知的整数.浮点数范围,那么可以使用java.math包中的两个类:BigInteger和BigDecimal. 这 ...