【FZYZOJ】数论课堂 题解(约数个数定理)
前言:想了两个小时orz,最后才想到要用约数个数定理……
-------------
题目大意:
给定$n,q,A[1],A[2],A[3]$
现有$A[i]=(A[i-1]+A[i-2]+A[i-3])mod q$
求$(\sum_{i=1}^n \prod_{d|i} d^{A_i})mod10007$的值。
$n\leq 300000,q,A[1],A[2],A[3]\leq 10^{16}$。
------------------------
朴素算法是$O(n^2 \log n)$的,就算优化也是$O(n \sqrt n \log n)$,难以承受。
这时,我们注意到:
$ \prod_{d|i} d^{A_i}$
$=(\prod_{d|i} d)^{A_i}$
即$i$的所有因数的乘积的$A_{i}$次方。
我们设$f[i]$表示$i$的约数个数,因为因数是成对出现的,
那么有$\prod_{d|i} d=i^{f[i]/2}$(这里的$/$是计算机意义的)
若$i$为完全平方数,则结果还要乘$\sqrt i$。、
所以最后化简为:
$(\sum_{i=1}^n (i^{f[i]/2})^{A_i})mod10007$ $f[i]=2k$
$(\sum_{i=1}^n (i^{f[i]/2}*\sqrt i)^{A_i})mod10007$ $f[i]=2k+1$
$f[i]$可以用接近于线性的算法求得。时间复杂度$O(n\log n)$。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,q,a[],is[],f[],ans,prime[];
bool vis[];
void work()
{
vis[]=vis[]=;
for (int i=;i<=n;i++)
{
if (!vis[i]) prime[++prime[]]=i;
for (int j=;j<=prime[];j++)
{
if (i*prime[j]>n) break;
vis[i*prime[j]]=;
if (!(i%prime[j])) break;
}
}
}
int solve(int now)
{
int t=now,sum=,cnt=;
for (int j=;j<=prime[]&&prime[j]*prime[j]<=t;j++)
{
if (t%prime[j]==){
cnt=;
while(t%prime[j]==) cnt++,t/=prime[j];
sum=sum*(cnt+);
}
}
if (t>) sum<<=;
return sum;
}
int qpow(int a,int b)
{
a%=;
int res=;
while(b)
{
if (b%==) res=(res*a)%;
a=(a*a)%;
b>>=;
}
return res;
}
signed main()
{
cin>>n>>q>>a[]>>a[]>>a[];
work();
for (int i=;i*i<=n;i++) is[i*i]=i;
for (int i=;i<=n;i++)
a[i]=(a[i-]+a[i-]+a[i-])%q;
for (int i=;i<=n;i++){
f[i]=solve(i);
if (is[i]) ans=(ans+qpow(qpow(i,f[i]/)*is[i],a[i]))%;
else ans=(ans+qpow(qpow(i,f[i]/),a[i]))%;
}
cout<<ans;
return ;
}
【FZYZOJ】数论课堂 题解(约数个数定理)的更多相关文章
- hdu1492(约数个数定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...
- 【搜索】【约数个数定理】[HAOI2007]反素数ant
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的 ...
- 【线性筛】【筛法求素数】【约数个数定理】URAL - 2070 - Interesting Numbers
素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都 ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- 【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors
d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7) #include<cstdio> using namespace std; ...
- 数论专项测试——约数个数和(lucas的数论)
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- UVA - 294 Divisors【数论/区间内约数最多的数的约数个数】
Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an int ...
- 【POJ1845】Sumdiv(数论/约数和定理/等比数列二分求和)
题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\ ...
- 牛客:t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数(数论+贪心)
https://ac.nowcoder.com/acm/contest/907/B t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数 分析: 根据约数和定理:对于一个大于1正整数 ...
随机推荐
- SpringBoot入门详细教程
一.SpringBoot入门 1.SpringBoot简介 SpringBoot是整个Spring技术栈的整合,来简化Spring应用开发,约定大于配置,去繁从简,just run 就能创建一 个独立 ...
- python 生成器(二):生成器基础(二)惰性实现
简介 设计 Iterator 接口时考虑到了惰性:next(my_iterator) 一次生成一个元素.懒惰的反义词是急迫,其实,惰性求值(lazy evaluation)和及早求值(eager ev ...
- 安装 VsCode 插件安装以及配置
安装vscode 官方网站 https://code.visualstudio.com/ 下载后 1.双击vscode.exe 2.选择 我接受 3.一路下一步,遇到方框就选4.点击 安装按钮 v ...
- Oracle基础概述
本部分主要参考”风哥“的Oracle入门视频. 一.体系结构概述 1.物理结构(文件结构) Oracle有四种文件:控制文件.数据文件.日志文件.参数文件 其中日志文件分为两类:联机日志文件.归档日志 ...
- Windows File Recovery - 微软官方文件恢复工具
假如你不小心误删除了文件或因各种意外情况丢失数据后,你可以通过 微软这款工具 这个工具来尝试恢复它们.WinFR 工具支持读取本机硬盘.移动硬盘.U 盘,或者连接相机.手机.使用读卡器来恢复 SD.T ...
- Angular 的前世今生
目录 序言 AngularJS 简介 Angular 2.0 的动机 现如今的 Angular Angular 的核心概念 参考 序言 Angular 一般意义上是指 Angular v2 及以上版本 ...
- CentOS7编译安装php7.1配置教程详解
这篇文章主要介绍CentOS7编译安装php7.1的过程和配置详解,亲测 ,需要的朋友可以参考. 1.首先安装依赖包: yum install libxml2 libxml2-devel openss ...
- .Net Core缓存组件(MemoryCache)【缓存篇(二)】
一.前言 .Net Core缓存源码 1.上篇.NET Core ResponseCache[缓存篇(一)]中我们提到了使用客户端缓存.和服务端缓存.本文我们介绍MemoryCache缓存组件,说到服 ...
- 五分钟快速搭建Serverless免费邮件服务
1. 引言 本文将带你快速基于 Azure Function 和 SendGrid 构建一个免费的Serverless(无服务器)的邮件发送服务,让你感受下Serverless的强大之处. 该服务可以 ...
- 清晰架构(Clean Architecture)的Go微服务—重大升级
去年,我创建了一个清晰架构(Clean Architecture)微服务框架,它功能强大,但有些重.我写了一个系列文章来讲述它,请参阅"清晰架构(Clean Architecture)的Go ...