【bzoj2588/P2633】count on a tree —— LCA + 主席树
(以下是luogu题面)
题目描述
给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权。其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文。
输入输出格式
输入格式:
第一行两个整数N,M。
第二行有N个整数,其中第i个整数表示点i的权值。
后面N-1行每行两个整数(x,y),表示点x到点y有一条边。
最后M行每行两个整数(u,v,k),表示一组询问。
输出格式:
M行,表示每个询问的答案。
说明
HINT:
N,M<=100000
思路:
一看到静态第K小,你就要想到主席树;一看到树,你就要树链剖分。
的确用树剖把树搞成区间,在上面架主席树是比较直接的想法。问题是树剖把链所划分成的区间的数目是不确定的,因此树剖能维护的一般是能够对每条链独立求出,再用结合律结合得出答案的信息。但是主席树需要用确定多的几棵前缀权值树维护一个虚拟的树,查询函数每次传入的参数最好是一样多的。我猜树剖可以写,但是实在太麻烦,而且还多一个log。
我们需要维护的其实只是两点之间简单路径的信息,联想到用树上差分实现树链修改的过程,我们可以用主席树维护一个类似于前缀的东西:定义root[i]表示从原树根节点到点i的路径上的权值线段树的根。每棵新树基于的原始版本是它父亲u的那棵树。这个思想与区间前缀和的关系就好比字符串之于Trie树(可能这么比喻也不恰当)。按dfs序建立这样的主席树之后,我们查询的树上路径可以这样求出:
设S[l, r]维护从l到r路径的值域信息的线段树,则
S[u, v] = S[root, u] + S[root, v] - S[root, lca(u, v)] - S[root, father(lca(u, v))]
可以看到这个形式与树上节点信息差分很像。那么我们还需要维护LCA的查询。(终于可以用树剖辣!@w@……不,你不想)
(倍增大法好
- #include <cstdio>
- #include <iostream>
- #include <cstring>
- #include <algorithm>
- #include <cctype>
- #define BUG puts("$$$")
- #define LG 17
- #define maxn 100010
- template <class T>
- void read(T &x) {
- x = 0;
- char ch = getchar();
- while (!isdigit(ch))
- ch = getchar();
- while (isdigit(ch)) {
- x = x * 10 + (ch ^ 48);
- ch = getchar();
- }
- }
- using namespace std;
- struct E {
- int to, nxt;
- } edge[maxn << 1];
- int head[maxn], top;
- int n, m;
- int a[maxn], N, st[maxn];
- inline void insert(int u, int v) {
- edge[++top] = (E) {v, head[u]};
- head[u] = top;
- }
- namespace LCA {
- int f[LG + 2][maxn], d[maxn];
- void dfs(int u, int pre) {
- d[u] = d[pre] + 1;
- f[0][u] = pre;
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v != pre)
- dfs(v, u);
- }
- }
- void init1() {
- dfs(1, 0);
- for (int k = 1; k <= LG; ++k)
- for (int i = 1; i <= n; ++i)
- f[k][i] = f[k-1][f[k-1][i]];
- }
- void swim(int &x, int d) {
- for (int i = 0; d; d >>= 1, ++i)
- if (d & 1)
- x = f[i][x];
- }
- int find(int u, int v) {
- if (d[u] > d[v]) swap(u, v);
- swim(v, d[v] - d[u]);
- if (u == v)
- return u;
- for (int k = LG; k >= 0; --k)
- if (f[k][u] != f[k][v])
- u = f[k][u], v = f[k][v];
- return f[0][u];
- }
- } using namespace LCA;
- namespace President_tree {
- #define lc(i) seg[i].lc
- #define rc(i) seg[i].rc
- #define mid ((l + r) >> 1)
- int root[maxn], tot;
- struct node {
- int cnt, lc, rc;
- } seg[maxn * 30];
- inline void update(int nd) {
- seg[nd].cnt = seg[lc(nd)].cnt + seg[rc(nd)].cnt;
- }
- int build(int l, int r) {
- int nd = ++tot;
- seg[nd].cnt = 0;
- if (l == r)
- return nd;
- lc(nd) = build(l, mid);
- rc(nd) = build(mid + 1, r);
- return nd;
- }
- int modify(int pre, int l, int r, int x) {
- int nd = ++tot;
- seg[nd] = seg[pre];
- if (l == r) {
- ++seg[nd].cnt;
- return nd;
- }
- if (x <= mid)
- lc(nd) = modify(lc(pre), l, mid, x);
- else rc(nd) = modify(rc(pre), mid + 1, r, x);
- update(nd);
- return nd;
- }
- void init2(int u, int pre) {
- root[u] = modify(root[pre], 1, N, a[u]);
- for (int i = head[u]; i; i = edge[i].nxt) {
- int v = edge[i].to;
- if (v != pre)
- init2(v, u);
- }
- }
- int query(int u, int v, int lca, int flca, int l, int r, int k) {
- if (l == r) {
- return st[l];
- }
- int lsum = seg[lc(u)].cnt + seg[lc(v)].cnt - seg[lc(lca)].cnt - seg[lc(flca)].cnt;
- if (k <= lsum)
- return query(lc(u), lc(v), lc(lca), lc(flca), l, mid, k);
- return query(rc(u), rc(v), rc(lca), rc(flca), mid + 1, r, k - lsum);
- }
- } using namespace President_tree;
- int contra(int* a) {
- for (int i = 1; i <= n; ++i)
- st[i] = a[i];
- sort(st + 1, st + 1 + n);
- int len = unique(st + 1, st + 1 + n) - st - 1;
- for (int i = 1; i <= n; ++i)
- a[i] = lower_bound(st + 1, st + len + 1, a[i]) - st;
- return len;
- }
- int main() {
- read(n), read(m);
- int u, v;
- for (int i = 1; i <= n; ++i)
- read(a[i]);
- N = contra(a);
- for (int i = 1; i < n; ++i) {
- read(u), read(v);
- insert(u, v), insert(v, u);
- }
- init1();
- init2(1, 0);
- int k, ans = 0;
- for (int i = 1; i <= m; ++i) {
- read(u), read(v), read(k);
- u = ans xor u;
- int lca = find(u, v);
- ans = query(root[u], root[v], root[lca], root[f[0][lca]], 1, N, k);
- printf("%d\n", ans);
- }
- return 0;
- }
【bzoj2588/P2633】count on a tree —— LCA + 主席树的更多相关文章
- 【BZOJ2588】Count On a Tree(主席树)
[BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...
- [BZOJ2588]Count on a tree(LCA+主席树)
题面 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...
- BZOJ2588 SPOJ10628 Count on a tree 【主席树】
BZOJ2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中l ...
- BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )
Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...
- Count on a tree 树上主席树
Count on a tree 树上主席树 给\(n\)个树,每个点有点权,每次询问\(u,v\)路径上第\(k\)小点权,强制在线 求解区间静态第\(k\)小即用主席树. 树上主席树类似于区间上主席 ...
- [Bzoj2588]Count on a tree(主席树+LCA)
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- 【洛谷 P2633】 Count on a tree(主席树,树上差分)
题目链接 思维难度0 实现难度7 建出主席树后用两点的状态减去lca和lca父亲的状态,然后在新树上跑第\(k\)小 #include <cstdio> #include <cstr ...
随机推荐
- 稳压二极管、肖特基二极管、静电保护二极管、TVS管
1.稳压二极管 正向导通电压跟普通二级管一样约为0.7v,反向状态下在临界电压之前截止,在达到临界电压的条件下会处于导通的状态,电压也不再升高,所以用在重要元器件上,起到稳压作用. 稳压二极管主要利用 ...
- 利用python3监控服务器状态进行邮件报警
在正式的生产环境中,我们常常会需要监控服务器的状态,以保证公司整个业务的正常运转,常常我们会用到像nagios.zabbix这类工具进行实时监控,那么用python我们怎么进行监控呢?这里我们利用了p ...
- RocketMQ4.7.1双主双从集群搭建
导读 上一集我们已经学会了SpringBoot整合RocketMQ点我直达,今天我们来搭建双主双从高性能MQ服务集群. 简介 主从架构 Broker角色,Master提供读写,Slave只支持读,Co ...
- 01.axios封装
1. 始vue化项目 https://www.cnblogs.com/xiaonq/p/11027880.html vue init webpack deaxios # 使用脚手架创建项目 dea ...
- Python中的小括号()、中括号[]、花括号{}区别
Python中最常见括号的区别: 在Python语言中最常见的括号有三种,分别是:小括号().中括号[].花括号{}:其作用也不相同,分别用来代表不同的Python基本内置数据类型. Python中的 ...
- XML转换成TXT行数据的Java程序
ZKe ------------------- XML数据的一个块内的所有属性,转换成TXT文件的一行.众所周知XML文件是通过类似HTML的标签进行数据的定义如图所示 属性由id, article, ...
- Facebook 的神仙组长什么样?
这里是<齐姐聊大厂>系列的第 14 篇 每周五早上 8 点,与你唠唠大厂的那些事 号外号外!前 12 篇已出 PDF:公粽号后台回复「大厂」即可获得! ❝ 小齐说: 这篇文章是来自阿米粥的 ...
- ohmyzsh的安装过程中失败拒绝连接问题的解决
1.打开官网https://ohmyz.sh/ 在官网能看到下面的界面 有这两种自动安装的方式 个人本次选择的是: wget https://raw.github.com/ohmyzsh/ohmyzs ...
- 5Flask数据库
video 43 安装mysql video44 SQLALchemy连接
- JavaScript 读取CSS3 transform
某些场景需要读取 css3 transform的属性 例如 transform:translate(10px,10px) rotate(-45deg); 这该怎么读取呢,正则表达式?毫无疑问这很坑爹 ...