题目链接

点我跳转

题目大意

给你一张完全图,你可以删除任意数量的边

要求删除完后剩余的所有子图必须是完全图

问完全子图数量最少是多少

解题思路

定义 \(ok[i]\) 表示状态为 \(i\) 时所对应的点构成的图是否为完全图 (\(1\) 为是 , \(0\) 为否)

判断完全图可直接暴力枚举任意两点检查是否有边

定义 \(dp[i]\) 表示状态为 \(i\) 时所对应的点构成的所有子图都为完全图,且子图数最小

其中 \(dp[0] = 0\)

那么不难得到当 \(ok[j] = 1\) 时

\(dp[i] = min(dp[i] , dp[i\) ^\(j] + 1)\) , ( \(j\) 为 \(i\) 的子集 )

答案为 \(dp[1 << n - 1]\)

AC_Code

#include<bits/stdc++.h>
using namespace std;
const int N = 1LL << 19 , M = 20;
int n , m , dp[N] , ok[N] , g[M][M];
signed main()
{
cin >> n >> m;
for(int i = 1 ; i <= m ; i ++)
{
int x , y;
cin >> x >> y;
g[x][y] = g[y][x] = 1;
}
int sum = 1 << n;
for(int i = 0 ; i < sum ; i ++)
{
ok[i] = 1;
for(int j = 1 ; j <= n ; j ++) if(i >> (j - 1) & 1)
{
for(int k = j + 1 ; k <= n ; k ++) if(i >> (k - 1) & 1)
{
if(!g[j][k]) { ok[i] = 0 ; break ; }
}
if(!ok[i]) break ;
}
dp[i] = 1e9;
}
dp[0] = 0;
for(int i = 0 ; i < sum ; i ++)
{
for(int j = i ; j ; j = (j - 1) & i) if(ok[j])
{
dp[i] = min(dp[i] , dp[i ^ j] + 1);
}
}
cout << dp[sum - 1] << '\n';
return 0;
}

AtCoder Beginner Contest 187 F - Close Group的更多相关文章

  1. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  2. AtCoder Beginner Contest 187

    A Large Digits int n; int main() { IOS; int a, b, resa = 0, resb = 0; cin >> a >> b; whi ...

  3. AtCoder Beginner Contest 261 F // 树状数组

    题目链接:F - Sorting Color Balls (atcoder.jp) 题意: 有n个球,球有颜色和数字.对相邻的两球进行交换时,若颜色不同,需要花费1的代价.求将球排成数字不降的顺序,所 ...

  4. AtCoder Beginner Contest 260 F - Find 4-cycle

    题目传送门:F - Find 4-cycle (atcoder.jp) 题意: 给定一个无向图,其包含了S.T两个独立点集(即S.T内部间的任意两点之间不存在边),再给出图中的M条边(S中的点与T中的 ...

  5. AtCoder Beginner Contest 253 F - Operations on a Matrix // 树状数组

    题目传送门:F - Operations on a Matrix (atcoder.jp) 题意: 给一个N*M大小的零矩阵,以及Q次操作.操作1(l,r,x):对于 [l,r] 区间内的每列都加上x ...

  6. AtCoder Beginner Contest 249 F - Ignore Operations // 贪心 + 大根堆

    传送门:F - Keep Connect (atcoder.jp) 题意: 给定长度为N的操作(ti,yi). 给定初值为0的x,对其进行操作:当t为1时,将x替换为y:当t为2时,将x加上y. 最多 ...

  7. AtCoder Beginner Contest 247 F - Cards // dp + 并查集

    原题链接:F - Cards (atcoder.jp) 题意: 给定N张牌,每张牌正反面各有一个数,所有牌的正面.反面分别构成大小为N的排列P,Q. 求有多少种摆放方式,使得N张牌朝上的数字构成一个1 ...

  8. AtCoder Beginner Contest 133 F Colorful Tree

    Colorful Tree 思路: 如果强制在线的化可以用树链剖分. 但这道题不强制在线,那么就可以将询问进行差分,最后dfs时再计算每个答案的修改值, 只要维护两个数组就可以了,分别表示根节点到当前 ...

  9. AtCoder Beginner Contest 171-175 F

    171 F - Strivore 直接把初始字符当成隔板,统计的方案数会有重复 为了避免重复情况,规定隔板字母尽可能最后出现,即在隔板字母后面不能插入含隔板字母的字符串 所以在隔板字母后插入的字符只有 ...

随机推荐

  1. 微服务注册到Nacos的IP私网172.x.x.x网段无法访问的问题

    解决方案一 显示声明注册服务实例的外网IP,默认就是使用私网的IP造成无法访问的,配置如下: spring: cloud: nacos: discovery: ip: 101.37.6.8 解决方案二 ...

  2. springboot多模块项目搭建遇到的问题记录

    废话不多说,直接上问题报错与解决方法. 问题报错一:(报错信息看下方代码) 问题原因:'com.company.logistics.service.company.CompanyService' 未找 ...

  3. 第8.14节 Python类中内置方法__str__详解

    一. object类内置方法__str__和函数str 类的内置方法__str__和内置函数str实际上实现的是同一功能,实际上str调用的就是__str__方法,只是调用方式不同,二者的调用语法如下 ...

  4. 【开发工具】 使用 Postman 进行接口测试 (配置全局 token,JWT可用)

    在前后端分离开发的项目中,使用postman来做接口测试会方便很多,然而因为JWT的鉴权,导致每半小时token都要更新一下,使测试变的很麻烦. 如果把token设置为全局变量,方便做测试,每次自动获 ...

  5. Trie 练习记录

    蒟蒻以前写的逊爆讲解 Trie CF665E Beautiful Subarrays 代码 把之前每个前缀和放进 trie 树里,然后 trie 树上查询即可. CF37C Old Berland L ...

  6. 【学习笔记】浅析平衡树套线段树 & 带插入区间K小值

    常见的树套树 一般来说,在嵌套数据结构中,线段树多被作为外层结构使用. 但线段树毕竟是 静态 的结构,导致了一些不便. 下面是一个难以维护的例子: 带插入区间 \(k\) 小值问题 来源:Luogu ...

  7. 自定义3D地图

    基于echarts的3D地图进行,直接将这代码粘贴到echarts的demo中即可呈现效果 var mygeo = { // 标准的geojson格式 "type": " ...

  8. uniapp计算属性的使用

    计算属性,也可称为动态属性,在uniapp中有两种写法: 第一种:直接返回一个计算的值,该计算属性为函数类型 computed:{ kh_score(){ var list = this.taskLi ...

  9. java中对象的简单解读

    对象=属性(int double之类都是变量的属性)+方法(想要实现内容,所做的一套算法) 属性=变量的所有数据 方法(c语言中叫做函数)=算法 总而言之 对象就是  给他所需要的的数据-->& ...

  10. PDCA

    Plan(规划) Do(执行) Check(验证) Adjust(调整)