题目链接

点我跳转

题目大意

给你一张完全图,你可以删除任意数量的边

要求删除完后剩余的所有子图必须是完全图

问完全子图数量最少是多少

解题思路

定义 \(ok[i]\) 表示状态为 \(i\) 时所对应的点构成的图是否为完全图 (\(1\) 为是 , \(0\) 为否)

判断完全图可直接暴力枚举任意两点检查是否有边

定义 \(dp[i]\) 表示状态为 \(i\) 时所对应的点构成的所有子图都为完全图,且子图数最小

其中 \(dp[0] = 0\)

那么不难得到当 \(ok[j] = 1\) 时

\(dp[i] = min(dp[i] , dp[i\) ^\(j] + 1)\) , ( \(j\) 为 \(i\) 的子集 )

答案为 \(dp[1 << n - 1]\)

AC_Code

#include<bits/stdc++.h>
using namespace std;
const int N = 1LL << 19 , M = 20;
int n , m , dp[N] , ok[N] , g[M][M];
signed main()
{
cin >> n >> m;
for(int i = 1 ; i <= m ; i ++)
{
int x , y;
cin >> x >> y;
g[x][y] = g[y][x] = 1;
}
int sum = 1 << n;
for(int i = 0 ; i < sum ; i ++)
{
ok[i] = 1;
for(int j = 1 ; j <= n ; j ++) if(i >> (j - 1) & 1)
{
for(int k = j + 1 ; k <= n ; k ++) if(i >> (k - 1) & 1)
{
if(!g[j][k]) { ok[i] = 0 ; break ; }
}
if(!ok[i]) break ;
}
dp[i] = 1e9;
}
dp[0] = 0;
for(int i = 0 ; i < sum ; i ++)
{
for(int j = i ; j ; j = (j - 1) & i) if(ok[j])
{
dp[i] = min(dp[i] , dp[i ^ j] + 1);
}
}
cout << dp[sum - 1] << '\n';
return 0;
}

AtCoder Beginner Contest 187 F - Close Group的更多相关文章

  1. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  2. AtCoder Beginner Contest 187

    A Large Digits int n; int main() { IOS; int a, b, resa = 0, resb = 0; cin >> a >> b; whi ...

  3. AtCoder Beginner Contest 261 F // 树状数组

    题目链接:F - Sorting Color Balls (atcoder.jp) 题意: 有n个球,球有颜色和数字.对相邻的两球进行交换时,若颜色不同,需要花费1的代价.求将球排成数字不降的顺序,所 ...

  4. AtCoder Beginner Contest 260 F - Find 4-cycle

    题目传送门:F - Find 4-cycle (atcoder.jp) 题意: 给定一个无向图,其包含了S.T两个独立点集(即S.T内部间的任意两点之间不存在边),再给出图中的M条边(S中的点与T中的 ...

  5. AtCoder Beginner Contest 253 F - Operations on a Matrix // 树状数组

    题目传送门:F - Operations on a Matrix (atcoder.jp) 题意: 给一个N*M大小的零矩阵,以及Q次操作.操作1(l,r,x):对于 [l,r] 区间内的每列都加上x ...

  6. AtCoder Beginner Contest 249 F - Ignore Operations // 贪心 + 大根堆

    传送门:F - Keep Connect (atcoder.jp) 题意: 给定长度为N的操作(ti,yi). 给定初值为0的x,对其进行操作:当t为1时,将x替换为y:当t为2时,将x加上y. 最多 ...

  7. AtCoder Beginner Contest 247 F - Cards // dp + 并查集

    原题链接:F - Cards (atcoder.jp) 题意: 给定N张牌,每张牌正反面各有一个数,所有牌的正面.反面分别构成大小为N的排列P,Q. 求有多少种摆放方式,使得N张牌朝上的数字构成一个1 ...

  8. AtCoder Beginner Contest 133 F Colorful Tree

    Colorful Tree 思路: 如果强制在线的化可以用树链剖分. 但这道题不强制在线,那么就可以将询问进行差分,最后dfs时再计算每个答案的修改值, 只要维护两个数组就可以了,分别表示根节点到当前 ...

  9. AtCoder Beginner Contest 171-175 F

    171 F - Strivore 直接把初始字符当成隔板,统计的方案数会有重复 为了避免重复情况,规定隔板字母尽可能最后出现,即在隔板字母后面不能插入含隔板字母的字符串 所以在隔板字母后插入的字符只有 ...

随机推荐

  1. C++编程指南续(4-5)

    五.常量 常量是一种标识符,它的值在运行期间恒定不变.C语言用 #define来定义常量(称为宏常量).C++ 语言除了 #define外还可以用const来定义常量(称为const常量). 5.1  ...

  2. 第三十一章、containers容器类部件QDockWidget停靠窗功能介绍

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 一.概述 QDockWidget类提供了一个可以停靠在QMainWin ...

  3. CTF流量分析题大全(掘安攻防平台)

    突然想做一下流量分析题,记得掘安攻防实验室上面有很多的流量分析题目,故做之 流量分析题一般使用的都是wireshark,(流量分析工具中的王牌 夺取阿富汗 说了分析http头,所以直接过滤http协议 ...

  4. 软工团队作业--Scrum冲刺集合贴

    软工团队作业--Scrum冲刺集合贴 团队 团队名称:广东靓仔六强选手 团队成员: 黄清山 黄梓浩 钟俊豪 周立 邓富荣 郑焕 博客链接 Scrum 冲刺 第一篇 Scrum 冲刺 第二篇 Scrum ...

  5. Dell R740 使用U盘安装 CentOS7.4 出现Warning:dracut-initqueue timeout - starting timeout scripts解决办法

    使用使用UltraISO软碟通刻录U盘,然后在Dell R740服务器安装CentOS7.4会出现如下错误: 解决办法: 1.使用blkid确认U盘的盘符,截图如下: 2.按F11键重启 3.进入启动 ...

  6. ACM里的期望和概率问题 从入门到精通

    起因:在2020年一场HDU多校赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有X,Y ...

  7. MVCAdmin项目知识点记录

    1.在过滤器中,用ViewBag类似的东西,要((ViewResult)filterContext.Result).ViewBag. 2.Controller中自己定义的非Action方法中(包括构造 ...

  8. 写一个为await自动加上catch的loader逐渐了解AST以及babel

    为什么要写这个loader 我们在日常开发中经常用到async await去请求接口,解决异步.可async await语法的缺点就是若await后的Promise抛出错误不能捕获,整段代码区就会卡住 ...

  9. 实验:非GTID 级联复制架构变为一主多从

  10. docker 使用ubuntu 系统

    1.安装Ubuntu系统命令:docker pull ubuntu这是一个极度精简的系统,连最基本的wget命令都没有:所以先要apt-get update升级系统和安装apt-get install ...