【Notes_3】现代图形学入门——基础变换、MVP变换模型
基础变换(二维)
三维变化与二维变换矩阵类似
齐次坐标下的基础变换
Scale:
s_x &0 &0\\
0 & s_y & 0 \\
0&0&1
\end{pmatrix}\]
Rotation:
\cos\alpha& - \sin\alpha & 0 \\
\sin\alpha & \cos \alpha &0 \\
0&0&1
\end{pmatrix}\]
Translation:
1 & 0 & t_x \\
0 &1& t_y\\
0 &0& 1
\end{pmatrix}\]
组合变换(Compositon Transform)
矩阵变换把先变化的矩阵放到右边:矩阵运算是从右向左

四元数与旋转公式
四元数
罗德里格斯旋转公式
Rodrigue's Rotation Formula: Raotation by angle \(\alpha\) around axis \(\vec{n}\)
\begin{matrix} \underbrace{
\begin{pmatrix}
0 & -n_z & n_y \\
n_z & 0 & -n_x \\
-n_y & n_x & 0
\end{pmatrix}
} \\ N\end{matrix}\]
In the formula
I :Identity matrix
最后乘积的结果是一个3*3的矩阵
MVP变换
Model Transformation
引用博客:MVP变换
对模型进行模型变换时,需要注意坐标系是在世界坐标系原点。当绕模型中心进行变换时,首先要将模型的中心点移动到世界坐标系的原点,之后在进行模型变换,之后移回到原来的位置。
矩阵描述为:$$M=M_t^{-1} M_r M_s M_t$$
View/Camera Transformation
这个过程是将确定相机的位置:将相机的位置通过下面的过程移动到固定的点和方向。
(1) 相机的位置固定在世界坐标系的原点: \(\vec{e}\)
(2) 相机的朝向 \(-\vec{Z}\): \(\hat{g}\)
(3) 相机的向上方向\(\vec Y\): \(\hat t\)

基于上述过程,要求视图变换矩阵\(M_{view}\)分别求相机的平移矩阵\(T_{view}\)、旋转矩阵\(R_{view}\)
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]
求旋转矩阵时,直接求相机旋转到原点的矩阵不容易求解,但求原点到相机位置的旋转矩阵容易求。
所以先求原点到相机的旋转矩阵:Z To \(-\hat{g}\)、Y To \(\hat{t}\)、最后保证\(\vec{X}\) To \((\hat g \times \hat t)\) 朝向的方向,原因是保证符合右手坐标系。
x_{\hat{g} \times \hat{t}}&x_{t}&x_{-g}&0\\
y_{\hat{g} \times \hat{t}}&x_{t}&y_{-g}&0\\
z_{\hat{g} \times \hat{t}}&x_{t}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]
因为\(R_{view}^{-1}\)是正交矩阵,所以逆矩阵和旋转矩阵相同。
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]
所以
\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}
\]
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]
Projection Transformation
个人理解投影变换的终极目的是让物体挤压在一个单位大小的平面(空间)内。原因先挖个坑。
Orthographic Projection
简单理解就是将物体的忽略z坐标,将模型通过Scale To [-1,-1]^2平面内。
真正的操作:
(1) 移动模型的位置到原点
(2) 缩放模型到空间[-1,1]^3中

Perspective Projection
正视投影的光线可以看成是一个立方体,如上图。透视投影的光线可以看成一个视锥,如下图。
透视变换可以分为两个步骤进行:
(1) 将视锥挤压到立方体内\(M_{persp->ortho}\)
(2) 将挤压后的视锥进行正视投影变换$M_{ortho}

挤压时的变换矩阵\(M_{persp->ortho}=\begin{bmatrix}
n&0&0&0\\
0&n&0&0\\
0&0&n+f&-nf\\
0 & 0&1&0
\end{bmatrix}\)
所以投影变换矩阵
\]
【Notes_3】现代图形学入门——基础变换、MVP变换模型的更多相关文章
- [计算机图形学]视图变换:MVP变换、视口变换
目录 一.MVP变换 1. 模型变换 1.1 缩放矩阵 1.2 旋转矩阵 1.3 平移矩阵 2. 视角变换 3. 投影变换 二.Viewport变换 一.MVP变换 MVP变换是模型变换(M).视角变 ...
- SVG 2D入门6 - 坐标与变换
坐标系统 SVG存在两套坐标系统:视窗坐标系与用户坐标系.默认情况下,用户坐标系与视窗坐标系的点是一一对应的,都为原点在视窗的左上角,x轴水平向右,y轴竖直向下:如下图所示: SVG的视窗位置一般是由 ...
- 【Notes】现代图形学入门_01
跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...
- 浅入kubernetes(1):Kubernetes 入门基础
目录 Kubernetes 入门基础 Introduction basic of kubernetes What Is Kubernetes? Components of Kubernetes Kub ...
- 【Notes_4】现代图形学入门——光栅化、离散化三角形、深度测试与抗锯齿
光栅化 Viewport Transform(视口变换) 将经过MVP变换后得到的单位空间模型变换到屏幕上,屏幕左边是左下角为原点. 所以视口变换的矩阵 \[M_{viewport}=\begin{p ...
- mybatis入门基础(二)----原始dao的开发和mapper代理开发
承接上一篇 mybatis入门基础(一) 看过上一篇的朋友,肯定可以看出,里面的MybatisService中存在大量的重复代码,看起来不是很清楚,但第一次那样写,是为了解mybatis的执行步骤,先 ...
- 01shell入门基础
01shell入门基础 为什么学习和使用shell编程 shell是一种脚本语言,脚本语言是相对于编译语言而言的.脚本语言不需要编译,由解释器读取程序并且执行其中的语句,而编译语言需要编译成可执行代码 ...
- Markdown入门基础
// Markdown入门基础 最近准备开始强迫自己写博文,以治疗严重的拖延症,再不治疗就“病入骨髓,司命之所属,无奈何”了啊.正所谓“工欲善其事,必先利其器”,于是乎在写博文前,博主特地研究了下博文 ...
- JavaScript入门基础
JavaScript基本语法 1.运算符 运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=).算术运 ...
随机推荐
- (22)zip命令:压缩文件或目录&&unzip命令:解压zip文件
1.zip 命令基本格式如下: [root@localhost ~]#zip [选项] 压缩包名 源文件或源目录列表 注意,zip 压缩命令需要手工指定压缩之后的压缩包名,注意写清楚扩展名,以便解压缩 ...
- .Net Core 使用 CSRedisCore 访问 Redis 的哨兵和主从复制
一.创建Redis服务 运行环境是Window,安装Redis请看:安装教程. 直接开始创建Redis服务,演示就创建两个一主一从,先把安装路径下的 redis.windows.conf 文件复制一份 ...
- MySQL 中的自增主键
MySQL 的主键可以是自增的,那么如果在断电重启后新增的值还会延续断电前的自增值吗?自增值默认为1,那么可不可以改变呢?下面就说一下 MySQL 的自增值. 特点 保存策略 1.如果存储引擎是 My ...
- CPU中的程序是怎么运行起来的(预告篇)
总述 最近一位朋友问我,我开发的代码是怎么运行起来的,我就开始给他介绍代码的预编译.汇编.编译.链接然后到一般的文件属性,再到代码运行.但是大佬问了我一句,CPU到底是怎么执行到每一个逻辑的, ...
- python+fiddler 抓取抖音数据包并下载抖音视频
这个我们要下载视频,那么肯定首先去找抖音视频的url地址,那么这个地址肯定在json格式的数据包中,所以我们就去专门查看json格式数据包 这个怎么找我就不用了,直接看结果吧 你找json包,可以选大 ...
- Codeforces Round #670 (Div. 2) B. Maximum Product (暴力)
题意:有一长度为\(n\)的序列,求其中任意五个元素乘积的最大值. 题解:先排序,然后乘积能是正数就搞正数,模拟一下就好了. 代码: int t; ll n; ll a[N]; int main() ...
- 梨子带你刷burp练兵场(burp Academy) - 服务器篇 - Sql注入 - SQL injection UNION attack, determining the number of columns returned by the query
目录 SQL injection UNION attack, determining the number of columns returned by the query SQL injection ...
- Base64 编码原理
什么是 Base64 编码 Base64 编码是最常见的编码方式,基于 64 个可打印字符来表示任意二进制数据的方法,是从二进制转换到可见字符的过程. 使用场景 数据加密或签名通过 Base64 转换 ...
- python之字符串replace的方法
1.描述 replace()方法把字符串中的old(旧字符串)替换成new(新字符串),如果有指定第三个参数max,则替换的不超过max次 2.语法 str.replace(old,new[,max] ...
- MD5强碰撞
关卡一 md5弱比较,为0e开头的会被识别为科学记数法,结果均为0 payload param1=QNKCDZO¶m2=aabg7XSs 关卡二 md5 ...