基础变换(二维)

三维变化与二维变换矩阵类似

齐次坐标下的基础变换

Scale:

\[S(s_x,s_y) =\begin{pmatrix}
s_x &0 &0\\
0 & s_y & 0 \\
0&0&1
\end{pmatrix}\]

Rotation:

\[R(\alpha) = \begin{pmatrix}
\cos\alpha& - \sin\alpha & 0 \\
\sin\alpha & \cos \alpha &0 \\
0&0&1
\end{pmatrix}\]

Translation:

\[T(t_x,t_y)=\begin{pmatrix}
1 & 0 & t_x \\
0 &1& t_y\\
0 &0& 1
\end{pmatrix}\]

组合变换(Compositon Transform)

矩阵变换把先变化的矩阵放到右边:矩阵运算是从右向左

四元数与旋转公式

四元数

留个坑,下周再填

罗德里格斯旋转公式

Rodrigue's Rotation Formula: Raotation by angle \(\alpha\) around axis \(\vec{n}\)

\[R(\vec{n},\alpha)=cos(\alpha)I+(1-cos(\alpha))nn^{T}+\sin(\alpha)
\begin{matrix} \underbrace{
\begin{pmatrix}
0 & -n_z & n_y \\
n_z & 0 & -n_x \\
-n_y & n_x & 0
\end{pmatrix}
} \\ N\end{matrix}\]

In the formula

I :Identity matrix

最后乘积的结果是一个3*3的矩阵

MVP变换

Model Transformation

引用博客:MVP变换

对模型进行模型变换时,需要注意坐标系是在世界坐标系原点。当绕模型中心进行变换时,首先要将模型的中心点移动到世界坐标系的原点,之后在进行模型变换,之后移回到原来的位置。

矩阵描述为:$$M=M_t^{-1} M_r M_s M_t$$

View/Camera Transformation

这个过程是将确定相机的位置:将相机的位置通过下面的过程移动到固定的点和方向。

(1) 相机的位置固定在世界坐标系的原点: \(\vec{e}\)

(2) 相机的朝向 \(-\vec{Z}\): \(\hat{g}\)

(3) 相机的向上方向\(\vec Y\): \(\hat t\)

基于上述过程,要求视图变换矩阵\(M_{view}\)分别求相机的平移矩阵\(T_{view}\)、旋转矩阵\(R_{view}\)

\[T_{view} = \begin{bmatrix}
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]

求旋转矩阵时,直接求相机旋转到原点的矩阵不容易求解,但求原点到相机位置的旋转矩阵容易求。

所以先求原点到相机的旋转矩阵:Z To \(-\hat{g}\)、Y To \(\hat{t}\)、最后保证\(\vec{X}\) To \((\hat g \times \hat t)\) 朝向的方向,原因是保证符合右手坐标系。

\[R_{view}^{-1}=\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&x_{t}&x_{-g}&0\\
y_{\hat{g} \times \hat{t}}&x_{t}&y_{-g}&0\\
z_{\hat{g} \times \hat{t}}&x_{t}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]

因为\(R_{view}^{-1}\)是正交矩阵,所以逆矩阵和旋转矩阵相同。

\[R_{view} =\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}\]

所以

\[M_{view} = R_{view} T_{view}=
\begin{bmatrix}
x_{\hat{g} \times \hat{t}}&y_{\hat{g} \times \hat{t}}&z_{\hat{g} \times \hat{t}}&0\\
x_{t}&y_{t}&z_{t}&0\\
x_{-g}&y_{-g}&z_{-g}&0\\
0&0&0&1
\end{bmatrix}
\]
\[\begin{bmatrix}
1 & 0 & 0 & -x_{\vec{e}} \\
0 & 1 & 0 & -y_{\vec{e}} \\
0 & 0 & 1 & -z_{\vec{e}} \\
0 & 0 & 0 & 1
\end{bmatrix}\]

Projection Transformation

个人理解投影变换的终极目的是让物体挤压在一个单位大小的平面(空间)内。原因先挖个坑。

Orthographic Projection

简单理解就是将物体的忽略z坐标,将模型通过Scale To [-1,-1]^2平面内。

真正的操作:

(1) 移动模型的位置到原点

(2) 缩放模型到空间[-1,1]^3中

Perspective Projection

正视投影的光线可以看成是一个立方体,如上图。透视投影的光线可以看成一个视锥,如下图。

透视变换可以分为两个步骤进行:

(1) 将视锥挤压到立方体内\(M_{persp->ortho}\)

(2) 将挤压后的视锥进行正视投影变换$M_{ortho}

挤压时的变换矩阵\(M_{persp->ortho}=\begin{bmatrix}
n&0&0&0\\
0&n&0&0\\
0&0&n+f&-nf\\
0 & 0&1&0
\end{bmatrix}\)

所以投影变换矩阵

\[M_{proj}=M_{ortho}M_{persp->ortho}
\]

【Notes_3】现代图形学入门——基础变换、MVP变换模型的更多相关文章

  1. [计算机图形学]视图变换:MVP变换、视口变换

    目录 一.MVP变换 1. 模型变换 1.1 缩放矩阵 1.2 旋转矩阵 1.3 平移矩阵 2. 视角变换 3. 投影变换 二.Viewport变换 一.MVP变换 MVP变换是模型变换(M).视角变 ...

  2. SVG 2D入门6 - 坐标与变换

    坐标系统 SVG存在两套坐标系统:视窗坐标系与用户坐标系.默认情况下,用户坐标系与视窗坐标系的点是一一对应的,都为原点在视窗的左上角,x轴水平向右,y轴竖直向下:如下图所示: SVG的视窗位置一般是由 ...

  3. 【Notes】现代图形学入门_01

    跟着闫令琪老师的课程学习,总结自己学习到的知识点 课程网址GAMES101 B站课程地址GAMES101 课程资料百度网盘[提取码:0000] 计算机图形学概述 计算机图形学是一门将模型转化到屏幕上图 ...

  4. 浅入kubernetes(1):Kubernetes 入门基础

    目录 Kubernetes 入门基础 Introduction basic of kubernetes What Is Kubernetes? Components of Kubernetes Kub ...

  5. 【Notes_4】现代图形学入门——光栅化、离散化三角形、深度测试与抗锯齿

    光栅化 Viewport Transform(视口变换) 将经过MVP变换后得到的单位空间模型变换到屏幕上,屏幕左边是左下角为原点. 所以视口变换的矩阵 \[M_{viewport}=\begin{p ...

  6. mybatis入门基础(二)----原始dao的开发和mapper代理开发

    承接上一篇 mybatis入门基础(一) 看过上一篇的朋友,肯定可以看出,里面的MybatisService中存在大量的重复代码,看起来不是很清楚,但第一次那样写,是为了解mybatis的执行步骤,先 ...

  7. 01shell入门基础

    01shell入门基础 为什么学习和使用shell编程 shell是一种脚本语言,脚本语言是相对于编译语言而言的.脚本语言不需要编译,由解释器读取程序并且执行其中的语句,而编译语言需要编译成可执行代码 ...

  8. Markdown入门基础

    // Markdown入门基础 最近准备开始强迫自己写博文,以治疗严重的拖延症,再不治疗就“病入骨髓,司命之所属,无奈何”了啊.正所谓“工欲善其事,必先利其器”,于是乎在写博文前,博主特地研究了下博文 ...

  9. JavaScript入门基础

    JavaScript基本语法 1.运算符 运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=).算术运 ...

随机推荐

  1. html输入框输入显示剩余字数

     效果图 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3 ...

  2. Linux和Xshell安装

    Linux安装 开启虚拟机 选择语言 软件选择 点击软件→软件选择→基础设施服务器 安装位置 网络连接 开始安装 设置root密码 建议设置成root,因为密码忘了改起来很麻烦 登录 查看IP Xsh ...

  3. 设计模式(三)——Java工厂方法模式

    工厂方法模式 1 看一个新的需求 披萨项目新的需求:客户在点披萨时,可以点不同口味的披萨,比如 北京的奶酪 pizza.北京的胡椒 pizza 或者是伦敦的奶酪 pizza.伦敦的胡椒 pizza. ...

  4. Codeforces Round #626 (Div. 2) B. Count Subrectangles

    题目连接:https://codeforces.com/contest/1323/problem/B 题意:给一个大小为n的a数组,一个大小为m的b数组,c数组是二维数组c[i][j]=a[i]*b[ ...

  5. Grakn Forces 2020

    比赛链接:https://codeforces.com/contest/1408 A. Circle Coloring 题意 给出三个长为 $n$ 的序列 $a,b,c$,对于每个 $i$,$a_i ...

  6. AtCoder Beginner Contest 188 C - ABC Tournament (模拟)

    题意:有\(2^n\)个人站成一排比赛,刚开始每个人都和自己右边的人进行比赛,赢得人晋级下一轮(下标的小的在前面),不断重复这个过程,问最后拿到第二名的人的编号. 题解:根据题意,可以用vector直 ...

  7. NFS 共享存储

    目录 环境准备 NFS服务端 NFS客户端 部署时常见报错 httpd服务 NFS 共享存储的坑 环境准备 主机名 WanIP(Wide Area Network) LanIP(Local Area ...

  8. oslab oranges 一个操作系统的实现 实验三 认识保护模式(二):分页

    实验目的: 掌握内存分页机制 对应章节:3.3 实验内容: 1.认真阅读章节资料,掌握什么是分页机制 2. 调试代码,掌握分页机制基本方法与思路 – 代码3.22中,212行---237行,设置断点调 ...

  9. 容器之List接口下各实现类(Vector,ArrayList 和LinkedList)的线程安全问题

    Vector .ArrayList 和LinkedList都是List接口下的实现类,但是他们之间的区别和联系是什么呢? 首先: 然后: 如果您仅仅想知道结论,那么可以关闭了. 下面我讨论讨论为什么. ...

  10. Leetcode(14)-最长公共前缀

    编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...