题目描述

一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯。即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口。对于每一个小矮人,我们知道他从脚到肩膀的高度Ai,并且他的胳膊长度为Bi。陷阱深度为H。如果我 们利用矮人1,矮人2,矮人3,。。。矮人k搭一个梯子,满足A1+A2+A3+....+Ak+Bk>=H,那么矮人k就可以离开陷阱逃跑了,一 旦一个矮人逃跑了,他就不能再搭人梯了。
我们希望尽可能多的小矮人逃跑, 问最多可以使多少个小矮人逃跑。

输入

第一行一个整数N, 表示矮人的个数,接下来N行每一行两个整数Ai和Bi,最后一行是H。(Ai,Bi,H<=10^5)

输出

一个整数表示对多可以逃跑多少小矮人

样例输入

样例1
2
20 10
5 5
30
样例2
2
20 10
5 5
35

样例输出

样例1
2
样例2
1


题解

贪心+dp

首先如果a.x+a.y<b.x+b.y(x、y分别为身高和手长),说明a的逃跑能力比b弱,应该先离开。如果不能离开,就待在下面。

然后按照这个dp即可。

f[i]表示逃出i人后人梯的最大高度。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
struct data
{
int x , y;
}a[2001];
int f[2001];
bool cmp(data a , data b)
{
return a.x + a.y < b.x + b.y;
}
int main()
{
int n , i , j , h , ans = 0;
scanf("%d" , &n);
memset(f , -1 , sizeof(f));
f[0] = 0;
for(i = 1 ; i <= n ; i ++ )
scanf("%d%d" , &a[i].x , &a[i].y) , f[0] += a[i].x;
scanf("%d" , &h);
sort(a + 1 , a + n + 1 , cmp);
for(i = 1 ; i <= n ; i ++ )
{
for(j = ans ; j >= 0 ; j -- )
if(f[j] + a[i].y >= h)
f[j + 1] = max(f[j + 1] , f[j] - a[i].x);
if(f[ans + 1] >= 0)
ans ++ ;
}
printf("%d\n" , ans);
return 0;
}

【bzoj3174】[Tjoi2013]拯救小矮人 贪心+dp的更多相关文章

  1. 【BZOJ-3174】拯救小矮人 贪心 + DP

    3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 686  Solved: 357[Submit][Status ...

  2. BZOJ3174. [TJOI2013]拯救小矮人(dp)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3174 题解 其实此题并不需要那么多YY的部分. 我们考虑若干个小矮人逃出的顺序.若跳出的 ...

  3. BZOJ3174 TJOI2013 拯救小矮人 贪心、DP

    传送门 原问题等价于:先给\(n\)个人排好顺序.叠在一起,然后从顶往底能走即走,问最多能走多少人 注意到一个问题:如果存在两个人\(i,j\)满足\(a_i + b_i < a_j + b_j ...

  4. [TJOI2013] 拯救小矮人- 贪心,dp

    结论:矮的人比高的人先走一定不会使得答案变劣 于是我们排序后,像 0-1 背包那样依次考虑每个人走不走 #include <bits/stdc++.h> using namespace s ...

  5. BZOJ3174 Tjoi2013 拯救小矮人(贪心+DP)

    传送门 Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个 ...

  6. BZOJ3174:[TJOI2013]拯救小矮人(DP)

    Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人, ...

  7. bzoj3174 [Tjoi2013]拯救小矮人

    Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人, ...

  8. BZOJ 3174 拯救小矮人(贪心+DP)

    题意 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人,我们知道他从脚到肩 ...

  9. [TJOI2013]拯救小矮人[排序+dp]

    题意 题目链接 分析 Imagine的完美回答 重点大概是证明我们选出要救的小矮人一定可以根据 \(a_i+b_i\) 的大小进行排序救出. 注意这里关注的对象是可以保留的高度,所以我们的dp值才会表 ...

随机推荐

  1. 版本控制工具——Git的拓展使用

    一.使用Github 通过前面两节已经配置了SSH Key与Github上的相关设置,接下来介绍常用的使用 使用Fork克隆一份到本地仓库 之后可以在自己的仓库克隆一份到本地 git clone gi ...

  2. windows 设置tomcat为自动启动服务

    1.下载免安装tomcat包,解压 2.配置环境变量: 点击新建,创建一个 变量名为:CATALINA_HOME 变量值为:tomcat解压文件的位置, 例如     F:\apache-tomcat ...

  3. 【LG1975】[国家集训队]排队

    [LG1975][国家集训队]排队 题面 洛谷 题解 又是一个偏序问题 显然\(CDQ\) 交换操作不好弄怎么办? 可以看成两次删除两次插入 排序问题要注意一下 代码 #include <ios ...

  4. 1030: [JSOI2007]文本生成器

    1030: [JSOI2007]文本生成器 https://www.lydsy.com/JudgeOnline/problem.php?id=1030 分析: AC自动机+dp. 正难则反,求满足的, ...

  5. Android UI控件:TextView

    TextVIew的属性详解 android:autoLink设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接.可选值(none/web /email/phone/ma ...

  6. Manual install on Windows 7 with Apache and MySQL

    These are instructions for installing on Windows 7 desktop (they may also be useful for a server ins ...

  7. 【SpringCloud 】第八篇: 消息总线(Spring Cloud Bus)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  8. 前端开发工程师 - 02.JavaScript程序设计 - 第2章.进阶篇

    第2章--进阶篇 类型进阶 类型: Undefined Null Boolean String Number Object 原始类型(值类型):undefined, null, true, " ...

  9. Linux中常用Shell命令

    本随笔文章,由个人博客(鸟不拉屎)转移至博客园 写于:2018 年 05 月 04 日 原地址:https://niaobulashi.com/archives/linux-shell.html -- ...

  10. Django学习总结-之-URLS反向解析

    2018-09-15  09:58:49 在CSDN博客审核效率提高之前, 又要在此处向各位唠叨了~ URL 与 URI URL : 统一资源定位符 相当于绝对路径 URI : 统一资源标志符 相当于 ...