一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2。显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积。积性函数的卷积还是积性函数,那么线性筛即可。因为μ(pc)=0 (c>=2),所以f(pc)还是比较好算的,讨论一波即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10000001
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,phi[N],mobius[N],prime[N],cnt;
ll f[N];
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4804.in","r",stdin);
freopen("bzoj4804.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
flag[]=;mobius[]=;phi[]=;f[]=;
for (int i=;i<N;i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-,mobius[i]=-,f[i]=i-;
for (int j=;j<=cnt&&prime[j]*i<N;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==)
{
phi[prime[j]*i]=phi[i]*prime[j];
if ((i/prime[j])%prime[j]) f[prime[j]*i]=f[i/prime[j]]*(1ll*prime[j]*prime[j]-*prime[j]+);
else f[prime[j]*i]=f[i]*prime[j];
break;
}
mobius[prime[j]*i]=-mobius[i];
phi[prime[j]*i]=phi[i]*(prime[j]-);
f[prime[j]*i]=f[i]*(prime[j]-);
}
}
for (int i=;i<N;i++) f[i]+=f[i-];
while (T--)
{
n=read();ll ans=;
for (int i=;i<=n;i++)
{
int t=n/(n/i);
ans+=(f[t]-f[i-])*(n/i)*(n/i);
i=t;
}
printf(LL,ans);
}
return ;
}

BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)的更多相关文章

  1. BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常

    求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...

  2. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  3. 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛

    Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...

  4. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  5. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  6. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  7. 【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

    题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 ...

  8. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  9. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

随机推荐

  1. 20154327 Exp1 PC平台逆向破解

    一.实践目标 1.运行原本不可访问的代码片段 2.强行修改程序执行流 3.以及注入运行任意代码 二.基础知识 1.直接修改程序机器指令,改变程序执行流程 2.通过构造输入参数,造成BOF攻击,改变程序 ...

  2. 【原创】Odoo开发文档学习之:构建接口扩展(Building Interface Extensions)(边Google翻译边学习)

    构建接口扩展(Building Interface Extensions) 本指南是关于为Odoo的web客户创建模块. 要创建有Odoo的网站,请参见建立网站;要添加业务功能或扩展Odoo的现有业务 ...

  3. logger 配置文件详解

    Logback配置文件详解 Logback,Java 日志框架. Logback 如何加载配置的 logback 首先会查找 logback.groovy 文件 当没有找到,继续试着查找 logbac ...

  4. 北京Uber优步司机奖励政策(3月16日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  5. Python3 linux安装

    ./configure --prefix=/usr/local/python3 --with-ssl --enable-optimizations make && make insta ...

  6. nodejs HTTP服务

    nodejs中的HTTP服务   nodejs最重要的方面之一是具有非常迅速的实现HTTP和HTTPS服务器和服务的能力.http服务是相当低层次的,你可能要用到不同的模块,如express来实现完整 ...

  7. SpringBoot入门(一)——开箱即用

    本文来自网易云社区 Spring Boot是什么 从根本上来讲Spring Boot就是一些库的集合,是一个基于"约定优于配置"的原则,快速搭建应用的框架.本质上依然Spring, ...

  8. Oracle锁表处理

    最近系统连续出现好几次锁表,昨晚又发生一次锁表,11点钟跑到客户现场,进过跟踪发现导致这次锁表的机器和上一次是同一台,花了近半小时解锁.之后到科室找到那台机器看看情况,发现那台机器速度超慢,保存一份病 ...

  9. android学习十三 首选项

    1,首选项可用用来持久保存用户设置,游戏最高分等 2,首选项有,列表首选项,复选框首选项,对话框首选项.. 3,通过xml文件和代码创建首选项      addPreferencesFromResou ...

  10. JMeter性能测试的基础知识和个人理解

    JMeter性能测试的基础知识和个人理解 1. JMeter的简介   JMeter是Apache组织开发的开源项目,设计之初是用于做性能测试的,同时它在实现对各种接口的调用方面做的比较成熟,因此,常 ...