http://poj.org/problem?id=1279

题目大意:给按照顺时针序的多边形顶点,问其内核可行区域面积。

——————————————————————————————

终于变了一点……然而还是半平面交的裸题。

求完点集之后我们叉乘求多边形面积即可。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
const int N=;
struct Point{
dl x;
dl y;
}p[N],point[N],q[N],z;
//point,初始点
//q,暂时存可行点
//p,记录可行点
int n,curcnt,cnt;
//curcnt,暂时存可行点个数
//cnt,记录可行点个数
inline Point getmag(Point a,Point b){
Point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline dl multiX(Point a,Point b){
return a.x*b.y-b.x*a.y;
}
inline void getline(Point x,Point y,dl &a,dl &b,dl &c){
a=y.y-x.y;
b=x.x-y.x;
c=y.x*x.y-x.x*y.y;
return;
}
inline Point intersect(Point x,Point y,dl a,dl b,dl c){
Point s;
dl u=fabs(a*x.x+b*x.y+c);
dl v=fabs(a*y.x+b*y.y+c);
s.x=(x.x*v+y.x*u)/(u+v);
s.y=(x.y*v+y.y*u)/(u+v);
return s;
}
inline void cut(dl a,dl b,dl c){
curcnt=;
for(int i=;i<=cnt;i++){
if(a*p[i].x+b*p[i].y+c>-eps)q[++curcnt]=p[i];
else{
if(a*p[i-].x+b*p[i-].y+c>eps){
q[++curcnt]=intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x+b*p[i+].y+c>eps){
q[++curcnt]=intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i=;i<=curcnt;i++)p[i]=q[i];
p[curcnt+]=p[];p[]=p[curcnt];
cnt=curcnt;
return;
}
inline void init(){
for(int i=;i<=n;i++)p[i]=point[i];
z.x=z.y=;
p[n+]=p[];
p[]=p[n];
point[n+]=point[];
cnt=n;
return;
}
inline void regular(){//调换方向
for(int i=;i<(n+)/;i++)swap(point[i],point[n-i]);
return;
}
inline dl solve(){
//注意:默认点是顺时针,如果题目不是顺时针,规整化方向
init();
for(int i=;i<=n;i++){
dl a,b,c;
getline(point[i],point[i+],a,b,c);
cut(a,b,c);
}
dl area=;
for(int i=;i<=cnt;i++){
area+=multiX(getmag(z,p[i]),getmag(z,p[i+]));
}
area=fabs(area/2.0);
return area;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lf%lf",&point[i].x,&point[i].y);
}
printf("%.2f\n",solve());
}
return ;
}

POJ1279:Art Gallery——题解的更多相关文章

  1. 再来一道测半平面交模板题 Poj1279 Art Gallery

    地址:http://poj.org/problem?id=1279 题目: Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  2. POJ1279 Art Gallery 多边形的核

    POJ1279 给一个多边形 求它的核的面积 所谓多边形的核 是多边形中的一个点集 满足其中的点与多边形边上的点的连线全部在多边形中 用多边形的每一条边所在的直线去切整个坐标平面 得到的一个凸包就是核 ...

  3. [poj1279]Art Gallery

    题意:求多边形的核的面积. 敲一下半平面交模板........  然后我wa了一早上就因为写了%lf  不知道poj什么破机制还不能用lf的,真的想跳楼 #include<iostream> ...

  4. poj 1279 -- Art Gallery (半平面交)

    鏈接:http://poj.org/problem?id=1279 Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  5. poj 1279 Art Gallery - 求多边形核的面积

    /* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...

  6. 【POJ】【2068】Art Gallery

    计算几何/半平面交 裸的半平面交,关于半平面交的入门请看神犇博客:http://blog.csdn.net/accry/article/details/6070621 然而代码我是抄的proverbs ...

  7. Narrow Art Gallery

    Time Limit: 4000ms, Special Time Limit:10000ms, Memory Limit:65536KB Total submit users: 11, Accepte ...

  8. poj 1279 Art Gallery (Half Plane Intersection)

    1279 -- Art Gallery 还是半平面交的问题,要求求出多边形中可以观察到多边形所有边的位置区域的面积.其实就是把每一条边看作有向直线然后套用半平面交.这题在输入的时候应该用多边形的有向面 ...

  9. UVA 10078 The Art Gallery

    Problem: Century Arts has hundreds of art galleries scattered all around the country and you are hir ...

随机推荐

  1. 使用conlleval.pl对CRF测试结果进行评价的方法

    基于CRF做命名实体识别系列 用CRF做命名实体识别(一) 用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 评测 用CRF做完命名实体识别我们测试之后得到的结果就是预测的标签,并不能直接得 ...

  2. Machine Learning Basic Knowledge

    常用的数据挖掘&机器学习知识(点) Basis(基础): MSE(MeanSquare Error 均方误差),LMS(Least MeanSquare 最小均方),LSM(Least Squ ...

  3. mysql c 获取error_code

    #include <stdio.h> #include <mysql.h> int main(int argc, char **argv) { MYSQL *con = mys ...

  4. Qt-QML-Button-ButtonStyle-实现鼠标滑过点击效果

    上次实现的自定义的Button功能是用的自定义的Rectangle来实现的,在慢慢的接触了QML之后,发现QML有自己定义的Button 这里盗版贴上Qt帮助文档中的部分关于Button的属性内容 B ...

  5. Allure--自动化测试报告生成

    之前尝试使用过testNG自带的测试报告.优化过reportNG的测试报告,对这两个报告都不能满意.后经查找资料,发现有个神器: Allure(已经有allure2了,笔者使用的就是allure2), ...

  6. Python 集合内置函数大全(非常全!)

    Python集合内置函数操作大全 集合(s).方法名 等价符号 方法说明 s.issubset(t) s <= t 子集测试(允许不严格意义上的子集):s 中所有的元素都是 t 的成员   s ...

  7. Java应用基础微专业-工程篇

    第1章-命令行 1.1 命令行基础 ls -a: list all files (including hidden files) .DS_Store: files detailed informati ...

  8. leetcode-买卖股票的最佳时机(动态规划)

    买卖股票的最佳时机 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润. 注意你不能在买入股 ...

  9. node事件循环

    Node.js 是单进程单线程应用程序,但是通过事件和回调支持并发,所以性能非常高. Node.js 的每一个 API 都是异步的,并作为一个独立线程运行,使用异步函数调用,并处理并发. Node.j ...

  10. HDU 1394Minimum Inversion Number

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...