题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选).

虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案

即是否存在一种选取方式使得sigma{fight[i],i is choosed}/sigma{cost[i],i is choosed}>=k

移项,发现只需要sigma{fight[i]-cost[i]*k,i is choosed}>=0,也就是把每个点的权值设置成”战斗力-花费*比值”,判断是否存在一种满足依赖关系的选取方案使得选择的权值之和>=0,那么让权值之和尽量大判定最大值是否大于等于0即可.定义f[i][j]表示i为根的子树中选取j个点时的最大权值,用背包暴力转移,看似是O(n^3)的,但仔细分析发现复杂度是O(n^2)的,因为每次合并一棵子树时付出的代价是”已经合并的兄弟子树的大小之和”*”正在合并的这棵子树的大小”,实质上是树上每对节点在LCA处贡献时间复杂度,这一部分相当于bzoj4033.

于是总体复杂度是O (log(ans)*N^2),n是2500,感觉很虚但是能跑过去…注意处理某棵子树如果选择那么子树的根节点必须选择,以及0号节点的处理.再有就是二分精度一定要调好.

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
struct edge{
int to,next;
}lst[maxn];int first[maxn],len=;
void addedge(int a,int b){
lst[len].to=b;lst[len].next=first[a];first[a]=len++;
}
int k,n;
int cost[maxn],fight[maxn],prt[maxn],sz[maxn];
double w[maxn];
double f[maxn][maxn];
void dfs(int x){
sz[x]=;
for(int pt=first[x];pt;pt=lst[pt].next){
dfs(lst[pt].to);
sz[x]+=sz[lst[pt].to];
}
}
void dp(int x){
int tot=;
if(x)f[x][]=w[x],tot=;
else f[x][]=;
for(int pt=first[x];pt;pt=lst[pt].next){
dp(lst[pt].to);tot+=sz[lst[pt].to];
for(int i=tot;i>=;--i){
for(int j=;j<=sz[lst[pt].to]&&j<=i;++j){
f[x][i]=max(f[x][i],f[x][i-j]+f[lst[pt].to][j]);
}
}
} }
bool check(double ans){
for(int i=;i<=n;++i){
w[i]=fight[i]-ans*cost[i];
}
memset(f,0xc2,sizeof(f));
dp();//printf("%.3f\n",f[2][1]);
return f[][k]>=;
}
int main(){
scanf("%d%d",&k,&n);
for(int i=;i<=n;++i){
scanf("%d%d%d",&cost[i],&fight[i],&prt[i]);addedge(prt[i],i);
}
dfs();
double l=,r=1e4;
while(r-l>1e-){
double mid=(l+r)/;
if(check(mid))l=mid;
else r=mid;
}
printf("%.3f\n",(r+l)/);
return ;
}

bzoj4753[JSOI2016]最佳团体的更多相关文章

  1. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  2. BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)

    看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...

  3. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  4. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  5. 【BZOJ4753】最佳团体(分数规划,动态规划)

    [BZOJ4753]最佳团体(分数规划,动态规划) 题面 BZOJ Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一 ...

  6. BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

    BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...

  7. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  8. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  9. [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序

    分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...

随机推荐

  1. 长沙Uber司机奖励政策(8月24日到8月30日)

    本周奖励(8月24日到8月30日) 滴滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://w ...

  2. VIO概述 On-Manifold Preintegration for Real-Time Visual--Inertial Odometry

    目前的研究方向可以总结为在滤波算法中实现高精度,在优化算法中追求实时性.当加入IMU后,研究方向分为松耦合和紧耦合,松耦合分别单独计算出IMU测量得到的状态和视觉里程计得到的状态然后融合,紧耦合则将I ...

  3. Tomcat7后台通过get接收数据处理乱码

    Tomcat7后台通过get接收数据处理乱码 //因为tomcat7 默认将用get传来的数据用ISO-8859-1封装, //将ajax传过来的值解码,再转码,//因为tomcat7 默认将用get ...

  4. JMeter性能测试的基础知识和个人理解

    JMeter性能测试的基础知识和个人理解 1. JMeter的简介   JMeter是Apache组织开发的开源项目,设计之初是用于做性能测试的,同时它在实现对各种接口的调用方面做的比较成熟,因此,常 ...

  5. python 水仙花

    #简单def narcissus(): for n in range(100, 1000, 1): a, b, c = n//100, (n//10)%10, (n%100)%10 if a ** 3 ...

  6. String、StringBuffer、StringBuilder的区别和解析

    1.三个类之间的关系 他们都是通过字符数组来实现的,继承关系 String:字符串常量,不可变类 StringBuffer:字符串变量,可变类,线程安全 StringBuilder:字符串变量,可变类 ...

  7. Python3开启Http服务

    在CMD命令行输入D: 切换到D盘, 然后输入 python -m http.server 8000 开启HTTP服务: 在浏览器地址栏输入 http://localhost:8000/

  8. linux学习总结----mongoDB总结

    dbhelper.py 用户登录和注册(加密算法) 加密导包 import hashlib 或者使用Md5 加密 MongoDB ->JSON service mysql start servi ...

  9. HADOOP docker(五):hadoop用户代理 Proxy user

    1.hadoop用户代理简介2.配置3.实验 1.hadoop用户代理简介 hadoop用户代理功能的作用是让超级用户superuser模拟一个普通用户来执行任务.比如用户joe通过oozie提交一个 ...

  10. wpa_supplicant之eloop_run分析

    部分内容转自http://blog.chinaunix.net/uid-20273473-id-3128151.html 重要结构体!!! struct eloop_sock { int sock; ...