有关概念:

  最小生成树:在连通图G中,连接图G所有顶点且总权最小的边构成的树

思路:
  首先对边按权从小到大排序,紧接着枚举每一条边,如果两个结点的祖先结点不同(并查集),则连上此边,直到边数等于结点数-1即可
  邻接矩阵输入,用类邻接表存储方式存边
 #include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN
#define MAXM
int father[MAXN],n,m,cnt,ans,a,b;
struct node
{
int u,v,val;
}edge[MAXM];
int cmp(node a,node b)
{
return a.val<b.val;
}
int find(int x)//并查集+路径压缩
{
if(father[x]==x)return x;
else return father[x]=find(father[x]);
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
father[i]=i;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
scanf("%d",&a);
if(a==)continue;
edge[++cnt].u=i;
edge[cnt].v=j;
edge[cnt].val=a;
}
}
sort(edge+,edge+cnt+,cmp);
m=cnt;
cnt=;
for(int i=;i<=m;i++)
{
a=find(edge[i].u);
b=find(edge[i].v);
if(a==b)continue;
else//连边
{
father[b]=a;
cnt++;
ans+=edge[i].val;
if(cnt==n)break;
}
}
printf("%d",ans);//最小生成树权值和
return ;
}

图论-最小生成树-Kruskal算法的更多相关文章

  1. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  2. 图论-最小生成树<Kruskal>

    昨天: 图论-最小生成树<Dijkstra,Floyd> 以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog. 可能今天的有点乱,好好理理,认真看完相信你会懂得 然而,文中提 ...

  3. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  4. 最小生成树Kruskal算法

    Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...

  5. 最小生成树------Kruskal算法

    Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...

  6. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  7. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  8. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  9. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

随机推荐

  1. BZOJ 1022 小约翰的游戏(anti-sg)

    这是个anti-sg问题,套用sj定理即可解. SJ定理 对于任意一个Anti-SG游戏,如果定义所有子游戏的SG值为0时游戏结束,先手必胜的条件: 1.游戏的SG值为0且所有子游戏SG值均不超过1. ...

  2. 前端开发学习之——dom ready和window onload的区别

    1.ready事件是在页面中所有DOM结构已完全加载时执行,监听的是 DomContentload 事件,初始化并解析完成时触发,不需要等待样式表.图片和 iframes 加载完,也就是说当这个事件触 ...

  3. BZOJ1856:[SCOI2010]字符串——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1856 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还 ...

  4. CC TSUBSTR:Substrings on a Tree——题解

    https://www.codechef.com/problems/TSUBSTR https://vjudge.net/problem/CodeChef-TSUBSTR 给一棵点权为字母的树,你只能 ...

  5. BZOJ 1016 Windy 数 | 数位DP

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1026 题解: f[i][j][1/0]表示枚举到第i位,这位开头是j,当前的数大于(1)或小 ...

  6. BZOJ2668 [cqoi2012]交换棋子 【费用流】

    题目链接 BZOJ2668 题解 容易想到由\(S\)向初始的黑点连边,由终态的黑点向\(T\)连边,然后相邻的点间连边 但是这样满足不了交换次数的限制,也无法计算答案 考虑如何满足一个点的交换次数限 ...

  7. 两年Java的面试经验

    前言:从过年前就萌生出要跳槽的想法,到过年来公司从3月初提出离职到23号正式离职,上班的时间也出去面试过几家公司,后来总觉的在职找工作总是得请假,便决心离职后找工作.到4月10号找到了一家互联网公司成 ...

  8. How to speed up insertion performance in PostgreSQL

    Disable any triggers on the table Drop indexes before starting the import, re-create them afterwards ...

  9. HDU 2639 背包第k优解

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  10. C语言函数的变参实用与分析

    实现变参传递的关键是: 传入参数在内存中是连续分布的. #define va_list void* #define va_arg(arg, type) *(type*)arg; arg = (char ...