题意:

定义f(i)=∑ k∣i k^d(i≤n),给出q个询问,每个询问询问区间[l,r]的f(i)的和。

n<=1e7 d<=1e18 q<=5e4

可以发现f(i)是个积性函数,那么我们就可以欧拉筛 O(n) 预处理出f(i),然后做个前缀和就行了。

f(i)分为三种情况:

1.i为素数 f(i)=i^d

2.i%p[j]!=0 f(i*pj)=f(i)*f(p[j])

3.i%p[j]==0 这个比较复杂,以下是f老板说的:我们要考虑的是i*p[j]比i多的约数是什么,假设i*p[j]是p[j]的k次,那多出来的约数都是p[j]^k再乘个数,否则已经被i包含了,那只要考虑这些数的贡献就行,也就是f(i*p[j]/p[j]^k)*(p[j]^k)^d

//by zykykyk
#include<cstdio>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<string>
#include<cstring>
#define rg register
#define il inline
#define vd void
#define ll long long
#define mod 1000000007
#define maxn 10000010
#define For(i,x,y) for (rg int i=(x);i<=(y);i++)
#define Dow(i,x,y) for (rg int i=(x);i>=(y);i--)
#define cross(i,k) for (rg int i=first[k];i;i=last[i])
using namespace std;
il ll max(ll x,ll y){return x>y?x:y;}
il ll min(ll x,ll y){return x<y?x:y;}
il ll read(){
ll x=;int ch=getchar(),f=;
while (!isdigit(ch)&&(ch!='-')&&(ch!=EOF)) ch=getchar();
if (ch=='-'){f=-;ch=getchar();}
while (isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
int n,tot,q,x,P[maxn],minp[maxn],minpd[maxn],sum[maxn];
bool vis[maxn];
ll d;
il int power(int x,ll y){
int ans=;
for (;y;y>>=,x=1ll*x*x%mod) if (y&) ans=1ll*ans*x%mod;
return ans;
}
il vd init(){
n=read(),d=read(),q=read();
sum[]=;
For(i,,n){
if (!vis[i]) P[++tot]=minp[i]=i,minpd[i]=sum[i]=power(i,d),sum[i]=(sum[i]+)%mod;
for (int j=;i*P[j]<=n&&j<=tot;j++){
int k=i*P[j];
vis[k]=;
if (i%P[j]==){
minp[k]=minp[i]*P[j];
minpd[k]=1ll*minpd[i]*minpd[P[j]]%mod;
sum[k]=(sum[i]+1ll*minpd[k]*sum[k/minp[k]]%mod)%mod;
break;
}
else {
minp[k]=P[j];
minpd[k]=minpd[P[j]];
sum[k]=1ll*sum[i]*sum[P[j]]%mod;
}
}
}
For(i,,n) (sum[i]+=sum[i-])%=mod;
} int l,r;
il vd work(){
while (q--){
l=read(),r=read();
printf("%d\n",((sum[r]-sum[l-])%mod+mod)%mod);
}
} int main(){
init(),work();
}

Luogu P3362 Cool loves shaxian 生成函数的更多相关文章

  1. 【luogu P2397 yyy loves Maths VI (mode) 】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2397 卡空间. 对于众数出现次数 > n/2 我们考虑rand. 每次正确的概率为1/2,五个测试点, ...

  2. Luogu P5351 Ruri Loves Maschera

    先ORZ\(Owen\)一发.感觉是个很套路的题,这里给一个蒟蒻的需要特判数据的伪\(n\log^2 n\)算法,真正的两只\(\log\)的还是去看标算吧(但这个好想好写跑不满啊) 首先这种树上路径 ...

  3. Luogu P2397 yyy loves Maths VI (mode)

    题目传送门 虽然只是一道黄题,但还是学到了一点新知识-- 摩尔投票法 用\(O(1)\)的内存,\(O(n)\)的时间来找出一串长度为n的数中的众数,前提是众数出现的次数要大于\(n/2\) 方法很简 ...

  4. Luogu P3602 Koishi Loves Segments

    传送门 题解 既然是选取区间,没说顺序 肯定先排遍序 都是套路 那么按什么排序呢??? 为了方便处理 我们把区间按左端点从小到大排序 把关键点也按从小到大排序 假设当扫到 \(i\) 点时,i 点之前 ...

  5. 『题解』Codeforces121A Lucky Sum

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Petya loves lucky numbers. Everybody k ...

  6. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  7. 【LG 4831】Scarlet loves WenHuaKe(生成函数)

    题目链接 一道好题,第一次用生成函数做题.感谢赛珂狼教我这个做法. 首先我们显然可以把题目中的限制转化成一个二分图的模型:左边有$n$个点,右边有$m$个点,如果在棋盘$(i,j)$这个点上放了炮,那 ...

  8. luogu P2000 拯救世界 生成函数_麦克劳林展开_python

    模板题. 将所有的多项式按等比数列求和公式将生成函数压缩,相乘后麦克劳林展开即可. Code: n=int(input()) print((n+1)*(n+2)*(n+3)*(n+4)//24)

  9. Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)

    题意: 题解: 这道题我思路大方向是正确的,但是生成函数推错导致一直WA,看了标程才改对-- 首先一个长为\(m\)的轮换的\(n\)次幂会分裂成\(\gcd(n,m)\)个长为\(\frac{m}{ ...

随机推荐

  1. lua滚动文字效果

    基本的思想都是创建一个clippingNode,将要截取的节点添加到clippingNode中,节点加上action即可. 下面是左右滚动的代码,如果是上下滚动,更简单了,只需修改Y坐标即可,都不用动 ...

  2. Fermat2018游记

    day (-22) 2018年2月5日 Devin大佬给我发了一份Waterloo AIF的原件截图,发现里面居然直接问你的Fermat分数,那么这么重要的考试当然不能错过啊 若干天之后刚开学不久的一 ...

  3. java.lang.ClassNotFoundException: com.mysql.cj.jdbc.Driver 找不到jar包的问题,路径问题

    1.参考连接: https://blog.csdn.net/huangbiao86/article/details/6428608 折腾了一上午,找到了这错误的原因.哎……悲剧! 确认包已经被导入we ...

  4. python自动开发之第二十四天(Django)

    一.ModelForm操作及验证 1.class Meta:class Meta: #注意以下字段不能加逗号 model = models.UserInfo #这里的all代指所用的字段,也可以是一个 ...

  5. vue-实现倒计时功能

    JavaScript 创建一个 countdown 方法,用于计算并在控制台打印距目标时间的日.时.分.秒数,每隔一秒递归执行一次. msec 是当前时间距目标时间的毫秒数,由时间戳相减得到,我们将以 ...

  6. bzoj 1191 超级英雄Hero

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1191 题解: 裸匈牙利,注意如果出现找不到增广路的情况就直接break #include& ...

  7. C 基础框架开发

    引言 有的人真的是天命所归 延安时期炸弹 投到他院子都 没炸. 有些事无法改变 是命! 我们也快'老'了, 常回家看看. 前言 扯淡结束了,今天分享的可能有点多,都很简单,但是糅合在一起就是有点复杂. ...

  8. javascript方法--call()

    关于call方法,以前经常看到这个方法,但是也没怎么用心去学习,后来觉得不行,所以知识在一点一点补~ 今天对自己学习call方法做一下总结 其实,学了call方法,会发现call跟apply其实是很像 ...

  9. leetcode 之Copy List with Random Pointer(23)

    深拷贝一个链表,不同的是这个链表有个额外的随机指针.参考:http://blog.csdn.net/ljiabin/article/details/39054999 做法非常的巧妙,分成三步,一是新建 ...

  10. Django-form組件補充

    自定义验证规则 方法一: 1 2 3 4 5 6 7 8 9 10 from django.forms import Form   from django.forms import widgets f ...