Pandas分组运算(groupby)修炼

Pandas的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚。

今天,我们一起来领略下groupby()的魅力吧。

首先,引入相关package:

import pandas as pd
import numpy as np

groupby的基础操作

In [2]: df = pd.DataFrame({'A': ['a', 'b', 'a', 'c', 'a', 'c', 'b', 'c'],
...: 'B': [2, 8, 1, 4, 3, 2, 5, 9],
...: 'C': [102, 98, 107, 104, 115, 87, 92, 123]})
...: df
...: Out[2]:
A B C
0 a 2 102
1 b 8 98
2 a 1 107
3 c 4 104
4 a 3 115
5 c 2 87
6 b 5 92
7 c 9 123

按A列分组(groupby),获取其他列的均值

df.groupby('A').mean()

Out[3]:
B C
A
a 2.0 108.000000
b 6.5 95.000000
c 5.0 104.666667

按多列进行分组(groupby)

df.groupby(['A','B']).mean()

Out[4]:
C
A B
a 1 107
2 102
3 115
b 5 92
8 98
c 2 87
4 104
9 123

分组后选择列进行运算

分组后,可以选取单列数据,或者多个列组成的列表(list)进行运算

In [5]: df = pd.DataFrame([[1, 1, 2], [1, 2, 3], [2, 3, 4]], columns=["A", "B", "C"])
...: df
...:
Out[5]:
A B C
0 1 1 2
1 1 2 3
2 2 3 4
In [6]: g = df.groupby("A")
In [7]: g['B'].mean() # 仅选择B列

Out[7]:
A
1 1.5
2 3.0
Name: B, dtype: float64
In [8]: g[['B', 'C']].mean() # 选择B、C列

Out[8]:
B C
A
1 1.5 2.5
2 3.0 4.0

可以针对不同的列选用不同的聚合方法

In [9]: g.agg({'B':'mean', 'C':'sum'})

Out[9]:
B C
A
1 1.5 5
2 3.0 4

聚合方法size()和count()

size跟count的区别: size计数时包含NaN值,而count不包含NaN值

In [10]: df = pd.DataFrame({"Name":["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"],
...: "City":["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"],
...: "Val":[4,3,3,np.nan,np.nan,4]})
...:
...: df
...:
Out[10]:
City Name Val
0 Seattle Alice 4.0
1 Seattle Bob 3.0
2 Portland Mallory 3.0
3 Seattle Mallory NaN
4 Seattle Bob NaN
5 Portland Mallory 4.0

count()

In [11]: df.groupby(["Name", "City"], as_index=False)['Val'].count()

Out[11]:
Name City Val
0 Alice Seattle 1
1 Bob Seattle 1
2 Mallory Portland 2
3 Mallory Seattle 0

size()

In [12]: df.groupby(["Name", "City"])['Val'].size().reset_index(name='Size')

Out[12]:
Name City Size
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1

分组运算方法 agg()

针对某列使用agg()时进行不同的统计运算

In [13]: df = pd.DataFrame({'A': list('XYZXYZXYZX'), 'B': [1, 2, 1, 3, 1, 2, 3, 3, 1, 2],
...: 'C': [12, 14, 11, 12, 13, 14, 16, 12, 10, 19]})
...: df
...:
Out[13]:
A B C
0 X 1 12
1 Y 2 14
2 Z 1 11
3 X 3 12
4 Y 1 13
5 Z 2 14
6 X 3 16
7 Y 3 12
8 Z 1 10
9 X 2 19
In [14]: df.groupby('A')['B'].agg({'mean':np.mean, 'standard deviation': np.std})

Out[14]:
mean standard deviation
A
X 2.250000 0.957427
Y 2.000000 1.000000
Z 1.333333 0.577350

针对不同的列应用多种不同的统计方法

In [15]: df.groupby('A').agg({'B':[np.mean, 'sum'], 'C':['count',np.std]})

Out[15]:
B C
mean sum count std
A
X 2.250000 9 4 3.403430
Y 2.000000 6 3 1.000000
Z 1.333333 4 3 2.081666

分组运算方法 apply()

In [16]: df = pd.DataFrame({'A': list('XYZXYZXYZX'), 'B': [1, 2, 1, 3, 1, 2, 3, 3, 1, 2],
...: 'C': [12, 14, 11, 12, 13, 14, 16, 12, 10, 19]})
...: df
...:
Out[16]:
A B C
0 X 1 12
1 Y 2 14
2 Z 1 11
3 X 3 12
4 Y 1 13
5 Z 2 14
6 X 3 16
7 Y 3 12
8 Z 1 10
9 X 2 19 In [17]: df.groupby('A').apply(np.mean)
...: # 跟下面的方法的运行结果是一致的
...: # df.groupby('A').mean()
Out[17]:
B C
A
X 2.250000 14.750000
Y 2.000000 13.000000
Z 1.333333 11.666667

apply()方法可以应用lambda函数,举例如下:

In [18]: df.groupby('A').apply(lambda x: x['C']-x['B'])
Out[18]:
A
X 0 11
3 9
6 13
9 17
Y 1 12
4 12
7 9
Z 2 10
5 12
8 9
dtype: int64 In [19]: df.groupby('A').apply(lambda x: (x['C']-x['B']).mean())
Out[19]:
A
X 12.500000
Y 11.000000
Z 10.333333
dtype: float64

分组运算方法 transform()

前面进行聚合运算的时候,得到的结果是一个以分组名为 index 的结果对象。如果我们想使用原数组的 index 的话,就需要进行 merge 转换。transform(func, args, *kwargs) 方法简化了这个过程,它会把 func 参数应用到所有分组,然后把结果放置到原数组的 index 上(如果结果是一个标量,就进行广播):

In [20]: df = pd.DataFrame({'group1' :  ['A', 'A', 'A', 'A',
...: 'B', 'B', 'B', 'B'],
...: 'group2' : ['C', 'C', 'C', 'D',
...: 'E', 'E', 'F', 'F'],
...: 'B' : ['one', np.NaN, np.NaN, np.NaN,
...: np.NaN, 'two', np.NaN, np.NaN],
...: 'C' : [np.NaN, 1, np.NaN, np.NaN,
...: np.NaN, np.NaN, np.NaN, 4]})
...: df
...:
Out[20]:
B C group1 group2
0 one NaN A C
1 NaN 1.0 A C
2 NaN NaN A C
3 NaN NaN A D
4 NaN NaN B E
5 two NaN B E
6 NaN NaN B F
7 NaN 4.0 B F In [21]: df.groupby(['group1', 'group2'])['B'].transform('count')
Out[21]:
0 1
1 1
2 1
3 0
4 1
5 1
6 0
7 0
Name: B, dtype: int64 In [22]: df['count_B']=df.groupby(['group1', 'group2'])['B'].transform('count')
...: df
...:
Out[22]:
B C group1 group2 count_B
0 one NaN A C 1
1 NaN 1.0 A C 1
2 NaN NaN A C 1
3 NaN NaN A D 0
4 NaN NaN B E 1
5 two NaN B E 1
6 NaN NaN B F 0
7 NaN 4.0 B F 0

上面运算的结果分析: {‘group1’:’A’, ‘group2’:’C’}的组合共出现3次,即index为0,1,2。对应”B”列的值分别是”one”,”NaN”,”NaN”,由于count()计数时不包括Nan值,因此{‘group1’:’A’, ‘group2’:’C’}的count计数值为1。
transform()方法会将该计数值在dataframe中所有涉及的rows都显示出来(我理解应该就进行广播)

将某列数据按数据值分成不同范围段进行分组(groupby)运算

In [23]: np.random.seed(0)
...: df = pd.DataFrame({'Age': np.random.randint(20, 70, 100),
...: 'Sex': np.random.choice(['Male', 'Female'], 100),
...: 'number_of_foo': np.random.randint(1, 20, 100)})
...: df.head()
...:
Out[23]:
Age Sex number_of_foo
0 64 Female 14
1 67 Female 14
2 20 Female 12
3 23 Male 17
4 23 Female 15

这里将“Age”列分成三类,有两种方法可以实现:

(a)bins=4

(b)bins=[19, 40, 65, np.inf]

In [24]: pd.cut(df['Age'], bins=4)
Out[24]:
... In [25]: pd.cut(df['Age'], bins=[19,40,65,np.inf])

分组结果范围结果如下:

In [26]: age_groups = pd.cut(df['Age'], bins=[19,40,65,np.inf])
...: df.groupby(age_groups).mean()

运行结果如下:

按‘Age’分组范围和性别(sex)进行制作交叉表

In [27]: pd.crosstab(age_groups, df['Sex'])

运行结果如下:

参考文章:http://stackoverflow.com/documentation/pandas/1822/grouping-data#t=201705040520188108539

更多精彩内容请关注公众号:
“Python数据之道”

Pandas分组运算(groupby)修炼的更多相关文章

  1. pandas聚合和分组运算——GroupBy技术(1)

    数据聚合与分组运算——GroupBy技术(1),有需要的朋友可以参考下. pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作.根据一个或多个 ...

  2. Pandas分组(GroupBy)

    任何分组(groupby)操作都涉及原始对象的以下操作之一.它们是 - 分割对象 应用一个函数 结合的结果 在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数.在应用函数中,可以执行以下 ...

  3. pandas分组运算(groupby)

    1. groupby() import pandas as pd df = pd.DataFrame([[1, 1, 2], [1, 2, 3], [2, 3, 4]], columns=[" ...

  4. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  5. 【学习】数据聚合和分组运算【groupby】

    分组键可以有多种方式,且类型不必相同 列表或数组, 某长度与待分组的轴一样 表示DataFrame某个列名的值 字典或Series,给出待分组轴上的值与分组名之间的对应关系 函数用于处理轴索引或索引中 ...

  6. Python数据聚合和分组运算(1)-GroupBy Mechanics

    前言 Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活.<Python for Data Analysis>这本书第9章详细的介绍了这方面的用法,但是有些细节不常用 ...

  7. python库学习笔记——分组计算利器:pandas中的groupby技术

    最近处理数据需要分组计算,又用到了groupby函数,温故而知新. 分组运算的第一阶段,pandas 对象(无论是 Series.DataFrame 还是其他的)中的数据会根据你所提供的一个或多个键被 ...

  8. 利用Python进行数据分析-Pandas(第六部分-数据聚合与分组运算)

    对数据集进行分组并对各组应用一个函数(无论是聚合还是转换),通常是数据分析工作中的重要环节.在将数据集加载.融合.准备好之后,通常是计算分组统计或生成透视表.pandas提供了一个灵活高效的group ...

  9. python中pandas数据分析基础3(数据索引、数据分组与分组运算、数据离散化、数据合并)

    //2019.07.19/20 python中pandas数据分析基础(数据重塑与轴向转化.数据分组与分组运算.离散化处理.多数据文件合并操作) 3.1 数据重塑与轴向转换1.层次化索引使得一个轴上拥 ...

随机推荐

  1. Html5 面试题汇总

    1.HTML5 为什么只需要写 <!DOCTYPE HTML>? 答案解析: Html5不基于SGML,因此不需要对DTD进行引用,但是需要DOCTYPE来规范浏览器的行为(让浏览器按照他 ...

  2. 【BZOJ】1724 [Usaco2006 Nov]Fence Repair 切割木板

    [算法]贪心+堆 #include<cstdio> #include<algorithm> using namespace std; ; int n,heap[maxn],sz ...

  3. Farey Sequence (欧拉函数+前缀和)

    题目链接:http://poj.org/problem?id=2478 Description The Farey Sequence Fn for any integer n with n >= ...

  4. centos6.4 yum安装nginx+mysql+php

    1.配置防火墙,开启80端口.3306端口vi /etc/sysconfig/iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport ...

  5. 01背包入门 dp

    题目引入: 有n个重量和价值分别为Wi,Vi的物品.从这些物品中挑选出总重量不超过W的物品,求所有挑选方案中的价值总和的最大值. 分析: 首先,我们用最普通的方法,针对每个物品是否放入背包进行搜索. ...

  6. hdu 2717 Catch That Cow(广搜bfs)

    题目链接:http://i.cnblogs.com/EditPosts.aspx?opt=1 Catch That Cow Time Limit: 5000/2000 MS (Java/Others) ...

  7. base--AuditResult

    //参考base-4.0.2.jar public class AuditResult implements TimeReferable, Serializable //参考api-1.0.0.jar ...

  8. deepin 快捷键

    从此脱离鼠标

  9. linux驱动基础系列--Linux mmc sd sdio驱动分析

    前言 主要是想对Linux mmc子系统(包含mmc sd sdio)驱动框架有一个整体的把控,因此会忽略某些细节,同时里面涉及到的一些驱动基础,比如平台驱动.块设备驱动.设备模型等也不进行详细说明原 ...

  10. Linux 内核通知链随笔【中】【转】

    转自:http://blog.chinaunix.net/uid-23069658-id-4364171.html 关于内核通知链不像Netlink那样,既可以用于内核与用户空间的通信,还能用于内核不 ...