题面

Bzoj

洛谷

题解

首先考虑从儿子来的贡献:

$$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$

根据容斥原理,就是儿子直接亮的概率减去当儿子不亮且他们之间的路径均不直接亮时的概率

接着考虑从父亲来的贡献,设$p$为:$\frac{g[u]\times f[u]}{f[v]+(1-f[v])\times(1-dis[i])}$

则:(画画图就可以理解)

$$ g[v]=p+(1-p)\times(1-dis[i]) $$

最后答案就是

$$ \sum_{i=1}^n1-f[i]\times g[i] $$

#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
typedef double db; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 5e5 + 10;
db poi[N], ret, son[N], fa[N], dis[N << 1];
int n, to[N << 1], nxt[N << 1], from[N], cnt;
bool vis[N];
inline void addEdge(int u, int v, db w) {
to[++cnt] = v, nxt[cnt] = from[u], dis[cnt] = w, from[u] = cnt;
} void dfs1(int u) {
vis[u] = 1, son[u] = 1. - poi[u];
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(vis[v]) continue; dfs1(v);
son[u] *= son[v] + (1. - son[v]) * (1. - dis[i]);
} vis[u] = 0;
} void dfs2(int u) {
vis[u] = 1;
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(vis[v]) continue;
db p = fa[u] * son[u] / (son[v] + (1. - son[v]) * (1. - dis[i]));
fa[v] = p + (1. - p) * (1. - dis[i]); dfs2(v);
}
} int main () {
read(n);
for(int i = 1, u, v, w; i < n; ++i)
read(u), read(v), read(w), addEdge(u, v, w / 100.), addEdge(v, u, w / 100.);
for(int i = 1, p; i <= n; ++i)
read(p), poi[i] = p / 100.;
fa[1] = 1, dfs1(1), dfs2(1);
for(int i = 1; i <= n; ++i)
ret += 1. - fa[i] * son[i];
return printf("%.6lf\n", ret) & 0;
}

Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)的更多相关文章

  1. 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP

    洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...

  2. 洛谷 P4284 [SHOI2014]概率充电器 解题报告

    P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  3. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  4. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  5. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  6. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  7. BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)

    Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...

  8. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  9. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

随机推荐

  1. python基础---输入输出

    1.输入字符串. name=input()   or name=input('please input a string') 这样可以接收一个字符串,包括空格,都可以输入.只有回车不接受,作为结束符, ...

  2. redis.conf 配置

    daemonize yes #以后台daemon方式运行redis pidfile "/var/run/redis.pid" #redis以后台运行,默认pid文件路径/var/r ...

  3. Linux SSH 无密码登录

    1. ssh-keygen -t rsa 2. scp root@ip:/root/.ssh/id_rsa.pub ./id2 3. cat id2 >> authtorized_keys ...

  4. 【BZOJ4069】【APIO2015】巴厘岛的雕塑 [贪心][DP]

    巴厘岛的雕塑 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 印尼巴厘岛的公路上有许多的雕塑, ...

  5. Bzoj3481 DZY Loves Math III

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 310  Solved: 65 Description Input Output Sample Input ...

  6. C++正则表达式例子

    给了策划配置公式的地方,需要将策划配置的公式文本转化为可执行的脚本代码:比如:self->mHp*2+target->2mMp*GetHit()+ self_mon->4mDan/1 ...

  7. 27、简述redis的有哪几种持久化策略及比较?

    Redis 提供了多种不同级别的持久化方式: RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot). AOF 持久化记录服务器执行的所有写操作命令 ...

  8. 大聊Python----生产消费者模型

    在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题.该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度. 为什么要使用生产者和消费者模式? 在线程世界里,生产者就是生产数 ...

  9. div圆角

    div{    -moz-border-radius: 10px;    -webkit-border-radius: 10px;    border-radius: 10px;}

  10. bzoj 2809 左偏树\平衡树启发式合并

    首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...