To begin or not to begin

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 765    Accepted Submission(s): 492

Problem Description
A box contains black balls and a single red ball. Alice and Bob draw balls from this box without replacement, alternating after each draws until the red ball is drawn. The game is won by the player who happens to draw the single red ball. Bob is a gentleman and offers Alice the choice of whether she wants to start or not. Alice has a hunch that she might be better off if she starts; after all, she might succeed in the first draw. On the other hand, if her first draw yields a black ball, then Bob’s chances to draw the red ball in his first draw are increased, because then one black ball is already removed from the box. How should Alice decide in order to maximize her probability of winning? Help Alice with decision.
 
Input
Multiple test cases (number of test cases≤50), process till end of input.
For each case, a positive integer k (1≤k≤10^5) is given on a single line.
 
Output
For each case, output:
1, if the player who starts drawing has an advantage
2, if the player who starts drawing has a disadvantage
0, if Alice's and Bob's chances are equal, no matter who starts drawing
on a single line.
 
Sample Input
1
2
 
Sample Output
0
1
 
Source
 
Recommend
 
 
 

给出 n 个黑球,一个红球。

抽出红球胜利。如果先手有优势 输出 1 没有优势 输出 2 机会均等输出 0

思路:可以手算出前几项的概率。

胆大的现在就可以猜答案了。奇数0 偶数 1

不放心的话,就打个表。

 #include<iostream>
#include<stdio.h>
#include<math.h>
#include <string>
#include<string.h>
#include<map>
#include<queue>
#include<set>
#include<utility>
#include<vector>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define maxn 200100
#define maxm 200005
#define rd(x) scanf("%d", &x)
#define rd2(x, y) scanf("%d%d", &x, &y)
#define mod 1000000007 int main()
{
int k;
while(~scanf("%d", &k)){
if(k%) printf("0\n");
else printf("1\n");
}
return ;
}
 

hdu 5978 To begin or not to begin(概率,找规律)的更多相关文章

  1. HDU 2147 kiki's game (简单博弈,找规律)

    kiki's game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 40000/1000 K (Java/Others)Total ...

  2. HDU 5795 A Simple Nim (博弈 打表找规律)

    A Simple Nim 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5795 Description Two players take turns ...

  3. HDU 5753 Permutation Bo (推导 or 打表找规律)

    Permutation Bo 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5753 Description There are two sequen ...

  4. HDU 5795 A Simple Nim(SG打表找规律)

    SG打表找规律 HDU 5795 题目连接 #include<iostream> #include<cstdio> #include<cmath> #include ...

  5. HDU 2672 god is a girl (字符串处理,找规律,简单)

    题目 //1,1,2,3,5,8,13,21,34,55…… //斐波纳契数列 #include<math.h> #include<stdio.h> #include<s ...

  6. HDU 2897 邂逅明下 (简单博弈,找规律)

    邂逅明下 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. HDU 4919 Exclusive or (数论 or 打表找规律)

    Exclusive or 题目链接: http://acm.hust.edu.cn/vjudge/contest/121336#problem/J Description Given n, find ...

  8. HDU 4861 Couple doubi (数论 or 打表找规律)

    Couple doubi 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/D Description DouBiXp has a ...

  9. 2014 HDU多校弟八场H题 【找规律把】

    看了解题报告,发现看不懂 QAQ 比较简单的解释是这样的: 可以先暴力下达标,然后会发现当前数 和 上一个数 的差值是一个 固定值, 而且等于当前数与i(第i个数)的商, 于是没有规律的部分暴力解决, ...

  10. hdu - 6277,2018CCPC湖南全国邀请赛B题,找规律,贪心找最优.

    题意: 给出N个小时,分配这些小时去写若干份论文,若用1小时写一份论文,该论文会被引用A次,新写一篇论文的话,全面的论文会被新论文引用一次. 找最大的H,H是指存在H遍论文,而且这些论文各被引用大于H ...

随机推荐

  1. 缓存在中间件中的应用机制(Django)

    缓存在中间件中的应用机制(Django) (右键图片:在新标签页中打开连接)

  2. rest_framework 认证与权限

    一  认证 1.1先写个类(认证组件) from app01 import models from rest_framework import exceptions from rest_framewo ...

  3. 购物单问题—WPS使用excel

    ****     180.90       88折 ****      10.25       65折 ****      56.14        9折 ****     104.65        ...

  4. 0409-服务注册与发现-Eurek Ribbon Feign常见问题及解决

    一.Eureka 1.1.Eureka Environment的配置: eureka.environment: 字符串 参考文档: https://github.com/Netflix/eureka/ ...

  5. And Design:拓荒笔记——Upload上传

    And Design:拓荒笔记——Upload上传 上传前

  6. HTML Forms(转)

    内容来自HTML Dog:http://htmldog.com/guides/html/beginner/forms/ Forms Forms被用来收集用户的输入,它们通常被作为web应用的接口. 在 ...

  7. MySQL-5.7 存储过程及函数

    1.语法 CREATE [DEFINER = { user | CURRENT_USER }] PROCEDURE sp_name ([proc_parameter[,...]]) [characte ...

  8. 微服务与SOA

    微服务跟SOA有什么区别呢,可以把微服务当做去除了ESB的SOA.ESB是SOA架构中的中心总线,拓扑结构应该是星形的,而微服务是去中心化的分布式软件架构. 一.巨石(monolith) web应用程 ...

  9. HGVS,非HGVS形式的突变描述解释

    NG_012232.1(NM_004006.1):c.93+1G>T: 在该转录本NM_004006.1外显子的第93个碱基的下1个碱基(属于内含子)G变为T. NG_012232.1(NM_0 ...

  10. mac下Appium环境配置

    一.Appium环境搭建 1.xcode(需要OS X版本支持): 下载对应版本的xcode(支持对应手机系统),解压,拖入应用程序. xcode下载地址:https://developer.appl ...