Lingo解决最优化问题
Lingo解决优化问题
@
前言
前面,我们已经对Lingo有了一定的了解,但是要想真正的熟悉Lingo在解决优化问题中的强大之处,还需要不断加强相关训练,本文主要是使用Lingo来解决优化问题,该文的主要目的有以下三点:
- 希望能够提升自己对Lingo的相关操作并加强对优化问题的思维模式
- 方便日后对Lingo核心操作的回顾
- 希望每一位到来的朋友能够有所收获
一、优化模型介绍
优化模型主要有三个基本要素:决策变量、目标函数、约束条件。其一般形式如下:
$$
opt \ \ \ \ f(x) \
s.t \ \ \ \ h_i(x)=0,\ i=1,2,\cdots,m \
g_j(x)\leq0,\ j=1,2,\cdots,l
$$
$opt$ 是“optimize”的缩写,表示“最优化”,一般为 $min$ 或 $max$,$f(x)$ 表示目标函数,$s.t.$ 是“subject to”的缩写“受约束于”,$h_i(x), g_i(x)$ 则表示约束条件,其中 $x$ 表示优化模型的决策变量。
二、运输问题
2.1 问题描述
Question:有三个生产地和四个销售地,其生产量、销售量及单位运费如表所示,求总运费最少的运输方案以及总运费。

2.2 问题分析
由题意,我们不难看出优化模型的决策变量是每个生产地向各个销售地运输的货量,即 $s_{ij}$。运输的总费用由各个产地向各个销售地运输所需费用之和,一个产地可以向多个销售地运输货物,一个销售地亦可接受多个产地的货物,所以可知优化模型中的目标函数是运输的总费用,即 $W=\sum3_{i=1}\sum4_{j=1}s_{ij}x_{ij}$。除此之外,该目标函数受到两个限制,即优化模型的约束条件:
- 生产地限制:每个生产地的运输量理应小于产生量,$\sum_{j=1}^4s_{ij}\leq a_i$
- 销售地限制:每个销售地接受的货物理应等于销售量,$\sum_{i=1}^3x_{ij}=b_j$
2.2 优化模型构建
有以上问题分析,为求出总运费最小的方案,我们可以构建该问题的优化模型如下:
$$
min \ \ \ \ \sum3_{i=1}\sum4_{j=1}s_{ij}x_{ij} \
s.t. \ \ \ \ \sum_{j=1}^4s_{ij}\leq a_i ;;\ \sum_{i=1}^3x_{ij}=b_j \ ;\ s_{ij}\geq0 \ ;
$$
2.3 模型求解
求解的Lingo代码如下:
sets:
supply/1..3/: s; !定义运输集,集中的每个元素都有对应的属性,即运输量s;
demand/1..4/: d; !定义需求集,集中的每个元素都有对应的属性,即需求量d;
link(supply, demand): p, x; !定义link衍生集,每个元素中都有两个属性,运费p,运输量x;
endsets
data:
s = 30 25 21; !定义数据集s,表示生产量;
d = 15 17 22 12; !定义数据集d,表示销售量;
p = 6 2 6 7 !定义数据集p,表示生产地向销售地所对应的运费;
4 9 5 3
8 8 1 5;
enddata
min = @sum(link(i,j): p(i,j)*x(i,j)); !目标函数;
@for(supply(i): @sum(demand(j): x(i,j)) <= s(i)); !生产地限制约束条件;
@for(demand(j): @sum(supply(i): x(i,j)) = d(j)); !销售地限制约束条件;
2.4 求解结果
运行如上所示Lingo程序,我们可以得到如下结果:

通过上图展示,我们可以得到运输的最佳方案以及最小运费161个单位。运输方案图示如下:

三、待更新
Lingo解决最优化问题的更多相关文章
- 使用Lingo增强JMS
虽然activemq+jencks的jms轻量级解决方案已经很好地在psa中work了,尤其spring的JmsTemplate使得代码更简单,但是还是存在问题. 问题来自暑期做psa的时候,link ...
- DeepLearning之路(三)MLP
DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/articl ...
- sicp第1章
牛顿迭代法求平方: (define (sqrt-iter guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) ...
- convex optimization
##凸优化总结所有这些想法基本是来自于书籍[convex optimization](http://book.douban.com/subject/1888111/),主要包括凸优化的基本理论,主要的 ...
- 【机器学习实战】第6章 支持向量机(Support Vector Machine / SVM)
第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/lates ...
- 机器学习之支持向量机(三):核函数和KKT条件的理解
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- 从线性模型(linear model)衍生出的机器学习分类器(classifier)
1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大 ...
- AI从业者需要应用的10种深度学习方法
https://zhuanlan.zhihu.com/p/43636528 https://zhuanlan.zhihu.com/p/43734896 摘要:想要了解人工智能,不知道这十种深度学习方法 ...
- 支持向量机-完整Platt-SMO算法加速优化
完整版SMO算法与简单的SMO算法: 实现alpha的更改和代数运算的优化环节一模一样,唯一的不同就是选择alpha的方式.完整版应用了一些能够提速的方法. 同样使用Jupyter实现,后面不在赘述 ...
随机推荐
- [转]How to Leak a Context: Handlers & Inner Classes
Consider the following code: public class SampleActivity extends Activity { private final Handler mL ...
- [由于远程方关闭传输流,身份验证失败]一次处理支付接口bug记录
因公司系统升级,出现突然有些银行卡不能支付的情况,最开始排查发现是第三方平台接口返回有问题: 返回如下: 从11月7日下午开始一直联系第三方,第三方开始排查,一直说是数据格式有问题. 修改格式以后问题 ...
- 关于Struts2中的ognl-2.6.11.jar和ognl-2.7.3.jar解决思路
关于Struts2中的ognl-2.6.11.jar和ognl-2.7.3.jar建了一个简单的工程:导入的jar包有六个,包括commons-fileupload-1.2.1.jarcommons- ...
- Win32线程——优先权
<Win32多线程程序设计>–Jim Beveridge & Robert Wiener Win32 优先权是以数值表现的,并以进程的“优先权类别(priority class)” ...
- HDU 2080(三角函数)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2080 夹角有多大II Time Limit: 1000/1000 MS (Java/Others) ...
- C#强大的编程功能
下面列出一些C#重要的功能 1.布尔条件 2.自动垃圾回收 3.标准库 4.组件版本 5.属性和事件 6.委托和事件管理 7.易于使用的泛型 8.索引器 9.条件编译 10.简单的多线程 11.LIN ...
- Canvas制作的下雨动画
简介 在codepen上看到一个Canvas做的下雨效果动画,感觉蛮有意思的.就研究了下,这里来分享下,实现技巧.效果可以见下面的链接. 霓虹雨: http://codepen.io/natewile ...
- 给requests模块添加请求头列表和代理ip列表
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,符合了Python语言的思想,通俗的说去繁存 ...
- 用模板引擎Art-Template渲染空格或换行符引发的一场“命案”
一.绪论 说实话,真的不知道如何给这篇博客命名,因为我觉得应该有一些小伙伴遇到跟我同样的问题正在抓耳挠腮中. 二.导火索 最近在做一个移动H5翻页的功能,类似于MAKA模板那种.假设大致框架如下 ...
- oracle之DQL
一.单表查询 语法:select * from table where 条件 group by 分组 having 过滤分组 order by 排序 --查询平均工资低于2000的部门的最大工资和平均 ...