[Luogu3769][CH弱省胡策R2]TATT
题意
其实就是四维偏序。
sol
第一维排序,然后就只需要写个\(3D-tree\)了。
据说\(kD-tree\)的单次查询复杂度是\(O(n^{1-\frac{1}{k}})\)。所以这里的复杂度是\(O(n^{\frac{5}{3}})\)。
code
#include<cstdio>
#include<algorithm>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
#define ls t[o].ch[0]
#define rs t[o].ch[1]
#define cmin(a,b) (a>b?a=b:a)
#define cmax(a,b) (a<b?a=b:a)
const int N = 5e4+5;
int n,D,root,fa[N],pos[N],lim[2][3],ans,Ans;
struct node{
int d[4],id;
bool operator < (const node &b) const
{return d[D]<b.d[D];}
}a[N];
struct kdtree{int d[3],Min[3],Max[3],ch[2],v,mx;}t[N];
void mt(int x,int y)
{
for (int i=0;i<3;++i)
cmin(t[x].Min[i],t[y].Min[i]),cmax(t[x].Max[i],t[y].Max[i]);
}
int build(int l,int r,int d)
{
D=d;int o=l+r>>1;
nth_element(a+l,a+o,a+r+1);
for (int i=0;i<3;++i)
t[o].d[i]=t[o].Min[i]=t[o].Max[i]=a[o].d[i];
pos[a[o].id]=o;
if (l<o) fa[ls=build(l,o-1,(d+1)%3)]=o,mt(o,ls);
if (o<r) fa[rs=build(o+1,r,(d+1)%3)]=o,mt(o,rs);
return o;
}
bool whole(int o)
{
for (int i=0;i<3;++i)
if (t[o].Min[i]<lim[0][i]||t[o].Max[i]>lim[1][i])
return false;
return true;
}
bool in(int o)
{
for (int i=0;i<3;++i)
if (t[o].d[i]<lim[0][i]||t[o].d[i]>lim[1][i])
return false;
return true;
}
bool empty(int o)
{
for (int i=0;i<3;++i)
if (t[o].Min[i]>lim[1][i]||t[o].Max[i]<lim[0][i])
return true;
return false;
}
void query(int o)
{
if (t[o].mx<=ans) return;
if (whole(o)) {cmax(ans,t[o].mx);return;}
if (empty(o)) return;
if (in(o)) cmax(ans,t[o].v);
if (ls) query(ls);if (rs) query(rs);
}
bool cmp(node i,node j)
{
for (int k=3;~k;--k)
if (i.d[k]^j.d[k])
return i.d[k]<j.d[k];
return i.id<j.id;
}
int main()
{
n=gi();
for (int i=1;i<=n;++i)
{
for (int j=0;j<4;++j) a[i].d[j]=gi();
a[i].id=i;
}
root=build(1,n,0);
sort(a+1,a+n+1,cmp);
for (int i=1;i<=n;++i)
{
for (int j=0;j<3;++j) lim[0][j]=0,lim[1][j]=a[i].d[j];
ans=0;query(root);++ans;cmax(Ans,ans);
t[pos[a[i].id]].v=ans;
for (int p=pos[a[i].id];p;p=fa[p]) cmax(t[p].mx,ans);
}
printf("%d\n",Ans);return 0;
}
[Luogu3769][CH弱省胡策R2]TATT的更多相关文章
- luoguP3769 [CH弱省胡策R2]TATT
luoguP3769 [CH弱省胡策R2]TATT PS:做这题前先切掉 P4148简单题,对于本人这样的juruo更助于理解,当然dalao就当练练手吧 题目大意: 现在有n个四维空间中的点,请求出 ...
- [CH弱省胡策R2]TATT
description 洛谷 data range \[ n\le 5\times 10^4\] solution 这就是四维偏序了... 好象时间复杂度是\(O(n^{\frac{5}{3}})\) ...
- 【题解】[CH弱省胡策R2]TATT
本蒟蒻第一道\(K-D-Tree\)维护\(dp\) Question 题目大意:求一条路径,使得其四个维度单调不降. 先排序消掉一维再说. 对于每一个点,初始的时候绝对长度是1啊.于是,先赋值一个1 ...
- 洛谷3769[CH弱省胡策R2]TATT (KDTree)(四维LIS)
真是一个自闭的题目(调了一个上午+大半个下午) 从\(WA\)到\(WA+TLE\)到\(TLE\)到\(AC\) 真的艰辛. 首先,这个题,我们可以考虑直接上四维KDTree来解决. 对于kdtre ...
- 【弱省胡策】Round #5 Count
[弱省胡策]Round #5 Count 太神仙了. \(DP\)做法 设\(f_{n,m,d,k}\)表示\(n*m\)的矩阵,填入第\(k\)个颜色,并且第\(k\)个颜色最少的一列上有\(d\) ...
- 弱省胡策 Magic
弱省胡策 Magic 求\(n\)个点\(n\)的条边的简单联通图的个数. 毒瘤,还要写高精. 我们枚举环的大小\(k\),\(\displaystyle ans=\sum_{k=3}^nC_n^k ...
- 【ContestHunter】【弱省胡策】【Round0】(A)&【Round1】(B)
DP+容斥原理or补集转化?/KD-Tree 唔……突然发现最早打的两场(打的最烂的两场)没有写记录……(太烂所以不忍记录了吗... 还是把搞出来了的两道题记录一下吧= =勉强算弥补一下缺憾…… Ro ...
- 【ContestHunter】【弱省胡策】【Round3】(C)
容斥原理+Fib Orz HE的神犇们 蒟蒻只能改出来第三题……实在太弱 官方题解:http://pan.baidu.com/s/1o6MdtQq fib的神奇性质……还有解密a[i]的过程……这里就 ...
- 【ContestHunter】【弱省胡策】【Round2】
官方题解:http://wyfcyx.is-programmer.com/posts/95490.html A 目前只会30分的暴力……DP好像很神的样子0.0(听说可以多次随机强行算? //Roun ...
随机推荐
- 【leetcode刷题笔记】Find Minimum in Rotated Sorted Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...
- Android bluetooth介绍
Android bluetooth介绍(一):基本概念及硬件接口Android bluetooth介绍(二): android 蓝牙代码架构及其uart 到rfcomm流程Android blueto ...
- golang解析json报错:invalid character '\x00' after top-level value
golang解析json报错:invalid character '\x00' after top-level value 手动复制字符串:{"files":["c:/t ...
- echo指令
1.在Linux中echo命令用来在标准输出上显示一段字符,比如:echo "the echo command test!" 这个就会输出“the echo command tes ...
- Java web应用中的常见字符编码问题的解决方法
以下是 Java Web应用的常见编码问题 1. html页面的编码 在web应用中,通常浏览器会根据http header: Content-type的值来决定用什么encoding, 比如遇到Co ...
- POJ - 2785 - 4 Values whose Sum is 0 - 二分折半查找
2017-08-01 21:29:14 writer:pprp 参考:http://blog.csdn.net/piaocoder/article/details/45584763 算法分析:直接暴力 ...
- 利用OPENSSH自身记录密码
大家都知道,OPENSSH是基于Linux下,一款开源,安全性不错的Linux SSH会话连接工具. 在渗透当中,当我们get root了.我们如何来记录Linux管理员登陆过的SSH? 想法如下: ...
- mysql 创建数据库 并设置utf8格式
CREATE DATABASE `database` CHARACTER SET utf8 COLLATE utf8_general_ci; 设置utf8之后,不容易出现中文乱码.
- c# 使用事务
EcAttendanceMatterBLL.OpenTransaction(); DbTransaction Tran = EcAttendanceMatterBLL.Transaction; _wf ...
- thinkphp接收阿里淘宝客数据
坑在于淘宝客api返回的数据对象是SimpleXMLElement Object类型,不转为php的json array类型数据直接扔到thinkphp循环输出中会达不到要的效果,奇奇怪怪的数组,一度 ...