计数类dp还是要多写啊

看上去并没有什么思路,加上被题解里状压的标签迷惑了,于是就去看了一眼题解里设计的状态

之后就很好做了

首先先搞明白这道题的本质,就是对于任何一行任何一列炮的个数都不能超过\(2\)

我们设\(dp[i][j][k]\)表示到了第\(i\)行一共有\(j\)列的炮个数为\(2\),有\(k\)列个数为\(1\)的总方案数

那么一个炮都没有放的列数自然是\(m-k-j\)啦

之后就可以随便做了

对于每一行我们有三种选择

  1. 不放

  2. 放一个

  3. 放两个

之后这就是我们的核心思想了

一共有五种转移,就是一些简单的计数原理和组合数学啦

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 105
#define LL long long
const LL P=9999973;
const LL inv=4999987;//2在P意义下的逆元
int n,m;
LL dp[maxn][maxn][maxn];
int main()
{
scanf("%d%d",&n,&m);
dp[1][0][0]=1;
dp[1][0][1]=m;
dp[1][0][2]=m*(m-1)*inv%P;
for(re int i=1;i<n;i++)
for(re int j=0;j<=m;j++)
for(re int k=0;k<=m;k++)
{
if(j+k>m) continue;
int p=m-k-j;
if(!dp[i][j][k]) continue;
dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])%P;//这一行什么都不放
if(j+1<=m&&k-1>=0)
dp[i+1][j+1][k-1]=(dp[i+1][j+1][k-1]+dp[i][j][k]*k%P)%P;//在原来有1个炮的列上放
if(p&&k+1<=m&&j+k+1<=m)
dp[i+1][j][k+1]=(dp[i+1][j][k+1]+dp[i][j][k]*p%P)%P;//在原来有0个炮的列上放
if(j+2<=m&&k-2>=0)
dp[i+1][j+2][k-2]=(dp[i+1][j+2][k-2]+(dp[i][j][k]*(k-1)*k%P)*inv)%P;//在两个原来有1的上放
if(p>=2&&k+2<=m&&j+k+2<=m)
dp[i+1][j][k+2]=(dp[i+1][j][k+2]+(dp[i][j][k]*(p-1)*p)%P*inv)%P;//在两个原来有0的上放
if(p&&j+1<=m&&k&&j+1+k<=m)
dp[i+1][j+1][k]=(dp[i+1][j+1][k]+dp[i][j][k]*k*p%P)%P;//在一个原来是0,一个原来是1上放 }
LL ans=0;
for(re int i=0;i<=m;i++)
for(re int j=0;j<=m;j++)
if(i+j<=m) ans=(ans+dp[n][i][j])%P;
std::cout<<ans;
return 0;
}

【[AHOI2009]中国象棋】的更多相关文章

  1. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  2. luogu 2051 [AHOI2009]中国象棋

    luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...

  3. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  4. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  5. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  6. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

  7. P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  9. [P2051 [AHOI2009]中国象棋] DP

    https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...

  10. BZOJ1801:[AHOI2009]中国象棋——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 https://www.luogu.org/problemnew/show/P2051 这次小 ...

随机推荐

  1. linq中where与skipwhile区别

    //字符串数组 string[] names = { "a1", "a2", "bcd","ab","bcde ...

  2. Shiro - web应用

    先不谈Spring,首先试着用最简易的方式将Shiro集成到web应用. 即使用一些Servlet ContextListener.Filter.ini这些简单的配置完成与web应用的集成. web. ...

  3. easyui+nodejs+sqlserver增删改查实现

    用到的模块或者技术: Express: http://www.expressjs.com.cn/4x/api.html#express Easyui: http://www.jeasyui.com/d ...

  4. 购物车之CheckBox所有事件

    html 主要是循环

  5. mysql-connector/python使用示例

    1.下载安装connector/python 地址:https://dev.mysql.com/downloads/connector/python/ 下载的版本(mysql-connector-py ...

  6. springboot伪静态

    在日常网站访问中,会把动态地址改造成伪静态地址. 例如: 访问新闻栏目 /col/1/,这是原有地址,如果这样访问,不利于搜索引擎检索收录,同时安全性也不是很好. 改造之后: /col/1.html. ...

  7. the resource is not on the build path of a php project

    打开工程里面的.project文件,确保里面的红色标记行都正确且存在,即可成功! <?xml version="1.0" encoding="UTF-8" ...

  8. 中南oj 1216: 异或最大值 数据结构

    1216: 异或最大值 Time Limit: 2 Sec  Memory Limit: 128 MB Submit: 98  Solved: 29 [Submit][Status][Web Boar ...

  9. curl POST JSON

    1. 场景 Controller接收json格式数据 封装bean @RequestMapping(value = "/bb", method = RequestMethod.PO ...

  10. cnpm 安装

    国内npm 安装比较慢,可选择cnpm npm install -g cnpm --registry=https://registry.npm.taobao.org