1.乘法逆元

直接使用等比数列求和公式,注意使用乘法逆元

---严谨,失细节毁所有

#include "bits/stdc++.h"
using namespace std;
#define rep(i, s, n) for(int i=s;i<n;i++)
#define MOD 1000000007
#define LL long long
const int N=;
LL quick_pow(LL a,LL b)
{
LL ans=;
while(b>){
if(b&){
ans=ans*a%MOD;
}
b>>=;
a=a*a%MOD;
}
return ans;
}
int main()
{
int n;
LL sum;
while(~scanf("%d",&n)){
sum= (quick_pow(, n+) - ) * % MOD;
///求2的逆元即可.因为2 * ? = 1 (mod 1000000007) ? = 500000004
///而不是简单的(quick_pow(3, n+1) - 1) /2 % mod;遇到mod /将/转变为*除数的逆元
printf("%lld\n",sum);
}
return ;
}

扩展欧几里得求乘法逆元

const int mod=;
long long inv(long long a)
{
if(a==)
return ;
return inv(mod%a)*(mod-mod/a)%mod;
}
int main()
{
cout<<inv()<<endl;
}

2.思维,构造递归求和公式

#include "bits/stdc++.h"
using namespace std;
#define rep(i, s, n) for(int i=s;i<n;i++)
#define _MOD 1000000007
#define ll long long
const int N=;
ll c;
ll power(ll a, ll b)
{
ll ans = ;
while (b)
{
if (b & )
{
ans = (ans * a) % _MOD;
}
b >>= ;
a = (a * a) % _MOD;
}
return ans;
} ll sum(ll a, ll k)
{
if (k == )
{
return a;
}
c = sum(a, k >> ); ///前k/2个次幂的和
///ans等于前k/2个次幂的和加上接着的k/2个次幂的和(前k/2个次幂的和乘以第k/2个数的次幂)
ll ans = (c + c * power(a, (k >> ))) % _MOD;
///加上最后一个奇数次方值
if (k & )
{
ans = (ans + power(a, k)) % _MOD;
}
return ans;
} int main()
{
ll n;
scanf("%lld", &n);
printf("%lld\n", ((sum(, n) % _MOD)) + );
return ;
}

带入 4、5试一下,递归的巧妙

参考:http://blog.csdn.net/f_zyj/article/details/51231838

51Nod 1013 3的幂的和 快速幂 | 乘法逆元 | 递归求和公式的更多相关文章

  1. 51nod 1113 矩阵快速幂( 矩阵快速幂经典模板 )

    1113 矩阵快速幂 链接:传送门 思路:经典矩阵快速幂,模板题,经典矩阵快速幂模板. /******************************************************* ...

  2. 51nod 1013 3的幂的和 - 快速幂&除法取模

    题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https:/ ...

  3. 51 Nod 1013 3的幂的和 矩阵链乘法||逆元+快速幂

    这道题我写了两种写法 一种利用逆元 a/b%mod=a*c%mod; (c是b的逆元)易得2的逆元就是5~~~04: 一种是矩阵快速幂 利用递推式得出结论 #include<cstdio> ...

  4. Educational Codeforces Round 13——D. Iterated Linear Function(矩阵快速幂或普通快速幂水题)

      D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input ...

  5. 51nod 1013:3的幂的和 快速幂

    1013 3的幂的和 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 求:3^0 + 3^1 +...+ 3^(N) mod 1000000007 ...

  6. 51Nod 1046 A^B Mod C Label:快速幂

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  7. 51Nod - 1242 斐波那契(快速幂)

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  8. 51nod 1013快速幂 + 费马小定理

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 这是一个等比数列,所以先用求和公式,然后和3^(n+1)有关,有n ...

  9. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

随机推荐

  1. ffmpeg实现mjpeg摄像头的采集-预览-拍照

    摄像头输出是mjpeg格式的,需要实现在线预览功能,然后实现拍照功能 1.可以设置采集图像的分辨率,预览分辨率为640*480,可以自定义 2.ctrl+\ 拍照,ctrl+c 退出 void tes ...

  2. Bacon's Cipher(培根密码)

    Description Bacon's cipher or the Baconian cipher is a method of steganography (a method of hiding a ...

  3. Unity3D 入门 - 工作区域介绍 与 入门示例

    一. 工作区域详解 1. Scence视图 (场景设计面板) scence视图简介 : 展示创建的游戏对象, 可以对所有的游戏对象进行 移动, 操作 和 放置; -- 示例 : 创建一个球体, 控制摄 ...

  4. PAT1024 强行用链表写了一发。

    主要的思想还是 上课的那个PPT上面的 链表反转的思想. 然后加一点七七八八的 递推. 一层一层往下翻转就好啦. 1A 真开心. 代码:http://paste.ubuntu.net/16506799 ...

  5. Java常用类之File类

    File 类: 1. java.io.File 类代表系统文件名(路径名.文件名); 2. File 类常见的构造方法: 2.1. File(String pathname):通过将给定路径名字符串转 ...

  6. 项目UML设计--日不落战队

    [团队信息] 团队项目: 小葵日记--主打记录与分享模式的日记app 队名:日不落战队 队员信息及贡献分比例: 短学号 名 本次作业博客链接 此次作业任务 贡献分配 备注 501 安琪 http:// ...

  7. Ansys Workbench热流固耦合仿真配置

    1.Fluent-Thermal-Structural瞬态分析 此模块连接在fluent已实现流体和固体的热流耦合,传递至thermal实际上只是将流体表面温度作为热载荷施加在固体的液体通道表面,极大 ...

  8. 配置apt-get告诉下载源

    本文转自:http://blog.csdn.net/hyl1718/article/details/7915296 方法: 1.修改源地址: cp /etc/apt/sources.list /etc ...

  9. sql语句中的insert 和 insert into 的区别?into有什么用?

    insert into tableName values(........) insert tableName (字段名1,字段名2,...)values(......)看语句结构就知道区别了 .in ...

  10. WPF一个对象显示多个属性

    一个对象显示多个属性使用模板的方法: 如图: <dataTemplate x:key="MyDataTemplate">