Connections between cities LCA
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
1 3 2
2 4 3
5 2 3
1 4
4 5
6
Hint
Huge input, scanf recommended.
题意是说给你一个森林,让你求两点之间的最近距离。
lca求最近公共祖先,如果不是在同一棵树上,则输出Not connected。
用并查集来判断是否在同一颗树上面
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("DATA.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = 1e5 + ;
int _pow[maxn], dep[maxn], dis[maxn], vis[maxn], ver[maxn];
int tot, head[maxn], dp[maxn * ][], k, first[maxn], fa[maxn];
struct node {
int u, v, w, nxt;
} edge[maxn << ];
void init() {
tot = ;
mem(head, -);
for (int i = ; i < maxn ; i++) fa[i] = i;
}
int Find(int x) {
return x == fa[x] ? fa[x] : fa[x] = Find(fa[x]);
}
void combine(int x, int y) {
int nx = Find(x), ny = Find(y);
if(nx != ny) fa[nx] = ny;
return ;
}
void add(int u, int v, int w) {
edge[tot].v = v, edge[tot].u = u;
edge[tot].w = w, edge[tot].nxt = head[u];
head[u] = tot++;
}
void dfs(int u, int DEP) {
vis[u] = ;
ver[++k] = u;
first[u] = k;
dep[k] = DEP;
for (int i = head[u]; ~i; i = edge[i].nxt) {
if (vis[edge[i].v]) continue;
int v = edge[i].v, w = edge[i].w;
dis[v] = dis[u] + w;
dfs(v, DEP + );
ver[++k] = u;
dep[k] = DEP;
}
}
void ST(int len) {
int K = (int)(log((double)len) / log(2.0));
for (int i = ; i <= len ; i++) dp[i][] = i;
for (int j = ; j <= K ; j++) {
for (int i = ; i + _pow[j] - <= len ; i++) {
int a = dp[i][j - ], b = dp[i + _pow[j - ]][j - ];
if (dep[a] < dep[b]) dp[i][j] = a;
else dp[i][j] = b;
}
}
}
int RMQ(int x, int y) {
int K = (int)(log((double)(y - x + )) / log(2.0));
int a = dp[x][K], b = dp[y - _pow[K] + ][K];
if (dep[a] < dep[b]) return a;
else return b;
}
int LCA(int u, int v) {
int x = first[u], y = first[v];
if (x > y) swap(x, y);
int ret = RMQ(x, y);
return ver[ret];
}
int main() {
for (int i = ; i < ; i++) _pow[i] = ( << i);
int n, m, q;
while(~sfff(n, m, q)) {
init();
mem(vis, );
for (int i = ; i < m ; i++) {
int u, v, w;
sfff(u, v, w);
add(u, v, w);
add(v, u, w);
combine(u, v);
}
k = ;
for (int i = ; i <= n ; i++) {
if (fa[i] == i) {
dis[i] = ;
dfs(i, );
}
}
ST( * n - );
while(q--) {
int u, v;
sff(u, v);
int lca = LCA(u, v);
if (Find(u) == Find(v)) printf("%d\n", dis[u] + dis[v] - * dis[lca]);
else printf("Not connected\n");
}
}
return ;
}
Connections between cities LCA的更多相关文章
- hdu 2874 Connections between cities [LCA] (lca->rmq)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- HDU 2874 Connections between cities(LCA Tarjan)
Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...
- hdu-2874 Connections between cities(lca+tarjan+并查集)
题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/327 ...
- HDU 2874 Connections between cities (LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意是给你n个点,m条边(无向),q个询问.接下来m行,每行两个点一个边权,而且这个图不能有环路 ...
- [hdu2874]Connections between cities(LCA+并查集)
题意:n棵树,求任意两点的最短距离. 解题关键:并查集判断两点是否位于一棵树上,然后求最短距离即可.此题可以直接对全部区间直接进行st表,因为first数组会将连接的两点的区间表示出来. //#pra ...
- hdu2876 Connections between cities(LCA倍增)
图不一定联通,所以用并查集找各个联通块的祖先分别建图,之后就和LCA的步骤差不多了 #include<iostream> #include<cstring> #include& ...
- HDU 2874 Connections between cities(LCA)
题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...
- hdu 2874 Connections between cities 带权lca判是否联通
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- hdu 2874 Connections between cities(st&rmq LCA)
Connections between cities Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
随机推荐
- (Python爬虫02) 制定爬虫的学习计划了
公司清退是件很让人郁闷的事情,精,气,神 都会受到影响.焦虑的心态,涣散的眼神, 无所适从的若无其事,人周茶凉的快速交接,各种担忧....平静的面孔波涛汹涌的心.... 认识聊天中满满的套路...还有 ...
- Python全栈 Web(边框、盒模型、背景)
原文地址 https://yq.aliyun.com/articles/634926 ......................................................... ...
- Exact Inference in Graphical Models
独立(Independence) 统计独立(Statistical Independence) 两个随机变量X,Y统计独立的条件是当且仅当其联合概率分布等于边际概率分布之积: \[ X \perp Y ...
- 关于mysql开元数据库的几个随想
现在已经是凌晨了,昨天晚上写了我人生中的第一篇笔记,觉得没什么可写的,写了一个多小时都没写出什么,现在突然想写点东西了,这是一个比较有趣的问题,前两个月换了新工作,记得当初面试这份工作的时候面试到第三 ...
- opencv-学习笔记(1)常用函数和方法。
opencv-学习笔记(1)常用函数和方法. cv2.imread(filename,falg) filename是文件名字 flag是读入的方式 cv2.MREAD_UNCHANGED :不进行转化 ...
- dice2win早期版本
原理; https://medium.com/dapppub/fairdicedesign-315a4e253ad6 早期版本地址: https://etherscan.io/address/0xD1 ...
- 上层应用与wpa_supplicant,wpa_supplicant与kernel 相关socket创建交互分析
单独拿出来,分析以下上层应用与wpa_supplicant wpa_supplicant与kernel 的socket交互. 关联上层应用与wpa_supplicant的socket的创建.连接流 ...
- c# load xml 中文报错
<?xml version="1.0" encoding="GB2312"?>
- Android中Parcelabel对象的使用和理解
1. Parcelable接口 Interface for classes whose instances can be written to and restored from a Parcel. ...
- 【Docker 命令】- top命令
docker top :查看容器中运行的进程信息,支持 ps 命令参数. 语法 docker top [OPTIONS] CONTAINER [ps OPTIONS] 容器运行时不一定有/bin/ba ...