Problem Description
After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 
Input
Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 
Output
For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 
Sample Input
5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 
Sample Output
Not connected
6

Hint

Hint

Huge input, scanf recommended.

 

 

题意是说给你一个森林,让你求两点之间的最近距离。
lca求最近公共祖先,如果不是在同一棵树上,则输出Not connected。

用并查集来判断是否在同一颗树上面

 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("DATA.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = 1e5 + ;
int _pow[maxn], dep[maxn], dis[maxn], vis[maxn], ver[maxn];
int tot, head[maxn], dp[maxn * ][], k, first[maxn], fa[maxn];
struct node {
int u, v, w, nxt;
} edge[maxn << ];
void init() {
tot = ;
mem(head, -);
for (int i = ; i < maxn ; i++) fa[i] = i;
}
int Find(int x) {
return x == fa[x] ? fa[x] : fa[x] = Find(fa[x]);
}
void combine(int x, int y) {
int nx = Find(x), ny = Find(y);
if(nx != ny) fa[nx] = ny;
return ;
}
void add(int u, int v, int w) {
edge[tot].v = v, edge[tot].u = u;
edge[tot].w = w, edge[tot].nxt = head[u];
head[u] = tot++;
}
void dfs(int u, int DEP) {
vis[u] = ;
ver[++k] = u;
first[u] = k;
dep[k] = DEP;
for (int i = head[u]; ~i; i = edge[i].nxt) {
if (vis[edge[i].v]) continue;
int v = edge[i].v, w = edge[i].w;
dis[v] = dis[u] + w;
dfs(v, DEP + );
ver[++k] = u;
dep[k] = DEP;
}
}
void ST(int len) {
int K = (int)(log((double)len) / log(2.0));
for (int i = ; i <= len ; i++) dp[i][] = i;
for (int j = ; j <= K ; j++) {
for (int i = ; i + _pow[j] - <= len ; i++) {
int a = dp[i][j - ], b = dp[i + _pow[j - ]][j - ];
if (dep[a] < dep[b]) dp[i][j] = a;
else dp[i][j] = b;
}
}
}
int RMQ(int x, int y) {
int K = (int)(log((double)(y - x + )) / log(2.0));
int a = dp[x][K], b = dp[y - _pow[K] + ][K];
if (dep[a] < dep[b]) return a;
else return b;
}
int LCA(int u, int v) {
int x = first[u], y = first[v];
if (x > y) swap(x, y);
int ret = RMQ(x, y);
return ver[ret];
}
int main() {
for (int i = ; i < ; i++) _pow[i] = ( << i);
int n, m, q;
while(~sfff(n, m, q)) {
init();
mem(vis, );
for (int i = ; i < m ; i++) {
int u, v, w;
sfff(u, v, w);
add(u, v, w);
add(v, u, w);
combine(u, v);
}
k = ;
for (int i = ; i <= n ; i++) {
if (fa[i] == i) {
dis[i] = ;
dfs(i, );
}
}
ST( * n - );
while(q--) {
int u, v;
sff(u, v);
int lca = LCA(u, v);
if (Find(u) == Find(v)) printf("%d\n", dis[u] + dis[v] - * dis[lca]);
else printf("Not connected\n");
}
}
return ;
}

Connections between cities LCA的更多相关文章

  1. hdu 2874 Connections between cities [LCA] (lca->rmq)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  2. HDU 2874 Connections between cities(LCA Tarjan)

    Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...

  3. hdu-2874 Connections between cities(lca+tarjan+并查集)

    题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others)     Memory Limit: 32768/327 ...

  4. HDU 2874 Connections between cities (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意是给你n个点,m条边(无向),q个询问.接下来m行,每行两个点一个边权,而且这个图不能有环路 ...

  5. [hdu2874]Connections between cities(LCA+并查集)

    题意:n棵树,求任意两点的最短距离. 解题关键:并查集判断两点是否位于一棵树上,然后求最短距离即可.此题可以直接对全部区间直接进行st表,因为first数组会将连接的两点的区间表示出来. //#pra ...

  6. hdu2876 Connections between cities(LCA倍增)

    图不一定联通,所以用并查集找各个联通块的祖先分别建图,之后就和LCA的步骤差不多了 #include<iostream> #include<cstring> #include& ...

  7. HDU 2874 Connections between cities(LCA)

    题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...

  8. hdu 2874 Connections between cities 带权lca判是否联通

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  9. hdu 2874 Connections between cities(st&rmq LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

随机推荐

  1. 【CSV数据文件】

    文件参数化设置方法

  2. vista x64 vs2010 win32添加资源 未能完成操作解决办法

    非常痛苦的感觉,不能用vc6,msdn library也不好用,去2k3系统试了下,没有任何问题,无奈想重装系统了,但是太浪费时间,装了虚拟机也是vistax64的,安装之后正常... 卸载重新安装依 ...

  3. 最短路径算法(II)

    什么??你问我为什么不在一篇文章写完所有方法?? Hmm…其实我是想的,但是博皮的加载速度再带上文章超长图片超多的话… 可能这辈子都打不开了吧… 上接https://www.cnblogs.com/U ...

  4. 洛谷 P1781 宇宙总统:sort(string)

    题目描述 地球历公元6036年,全宇宙准备竞选一个最贤能的人当总统,共有n个非凡拔尖的人竞选总统,现在票数已经统计完毕,请你算出谁能够当上总统. 输入输出格式 输入格式: 第一行为一个整数n,代表竞选 ...

  5. 90 [LeetCode] Subsets2

    Given a collection of integers that might contain duplicates, nums, return all possible subsets (the ...

  6. 关于GitHub推送时发生Permission denied (publickey)的问题

    今天在学习廖雪峰老师官网的git教程“添加远程库”时发现总是推送失败,下边提示“Permission denied (publickey) 这个问题” 传送门:https://www.liaoxuef ...

  7. “hello world!”团队第三次会议

    团队“hello world!”团队召开的第三次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 一.会议时间 2017年10 ...

  8. ueditor百度编辑器的赋值方法

    示例: http://ueditor.baidu.com/website/onlinedemo.html 引用代码: window.UMEDITOR_HOME_URL = $CONFIG['domai ...

  9. 二叉树及其遍历方法---python实现

    github:代码实现 本文算法均使用python3实现 1. 二叉树 1.1 二叉树的定义   二叉树是一种特殊的树,它具有以下特点:   (1)树中每个节点最多只能有两棵树,即每个节点的度最多为2 ...

  10. iOS- NSThread/NSOperation/GCD 三种多线程技术的对比及实现

    1.iOS的三种多线程技术 1.NSThread 每个NSThread对象对应一个线程,量级较轻(真正的多线程) 2.以下两点是苹果专门开发的“并发”技术,使得程序员可以不再去关心线程的具体使用问题 ...