Problem Description
After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 
Input
Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 
Output
For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 
Sample Input
5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 
Sample Output
Not connected
6

Hint

Hint

Huge input, scanf recommended.

 

 

题意是说给你一个森林,让你求两点之间的最近距离。
lca求最近公共祖先,如果不是在同一棵树上,则输出Not connected。

用并查集来判断是否在同一颗树上面

 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("DATA.txt","r",stdin)
#define gcd(a,b) __gcd(a,b)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int maxn = 1e5 + ;
int _pow[maxn], dep[maxn], dis[maxn], vis[maxn], ver[maxn];
int tot, head[maxn], dp[maxn * ][], k, first[maxn], fa[maxn];
struct node {
int u, v, w, nxt;
} edge[maxn << ];
void init() {
tot = ;
mem(head, -);
for (int i = ; i < maxn ; i++) fa[i] = i;
}
int Find(int x) {
return x == fa[x] ? fa[x] : fa[x] = Find(fa[x]);
}
void combine(int x, int y) {
int nx = Find(x), ny = Find(y);
if(nx != ny) fa[nx] = ny;
return ;
}
void add(int u, int v, int w) {
edge[tot].v = v, edge[tot].u = u;
edge[tot].w = w, edge[tot].nxt = head[u];
head[u] = tot++;
}
void dfs(int u, int DEP) {
vis[u] = ;
ver[++k] = u;
first[u] = k;
dep[k] = DEP;
for (int i = head[u]; ~i; i = edge[i].nxt) {
if (vis[edge[i].v]) continue;
int v = edge[i].v, w = edge[i].w;
dis[v] = dis[u] + w;
dfs(v, DEP + );
ver[++k] = u;
dep[k] = DEP;
}
}
void ST(int len) {
int K = (int)(log((double)len) / log(2.0));
for (int i = ; i <= len ; i++) dp[i][] = i;
for (int j = ; j <= K ; j++) {
for (int i = ; i + _pow[j] - <= len ; i++) {
int a = dp[i][j - ], b = dp[i + _pow[j - ]][j - ];
if (dep[a] < dep[b]) dp[i][j] = a;
else dp[i][j] = b;
}
}
}
int RMQ(int x, int y) {
int K = (int)(log((double)(y - x + )) / log(2.0));
int a = dp[x][K], b = dp[y - _pow[K] + ][K];
if (dep[a] < dep[b]) return a;
else return b;
}
int LCA(int u, int v) {
int x = first[u], y = first[v];
if (x > y) swap(x, y);
int ret = RMQ(x, y);
return ver[ret];
}
int main() {
for (int i = ; i < ; i++) _pow[i] = ( << i);
int n, m, q;
while(~sfff(n, m, q)) {
init();
mem(vis, );
for (int i = ; i < m ; i++) {
int u, v, w;
sfff(u, v, w);
add(u, v, w);
add(v, u, w);
combine(u, v);
}
k = ;
for (int i = ; i <= n ; i++) {
if (fa[i] == i) {
dis[i] = ;
dfs(i, );
}
}
ST( * n - );
while(q--) {
int u, v;
sff(u, v);
int lca = LCA(u, v);
if (Find(u) == Find(v)) printf("%d\n", dis[u] + dis[v] - * dis[lca]);
else printf("Not connected\n");
}
}
return ;
}

Connections between cities LCA的更多相关文章

  1. hdu 2874 Connections between cities [LCA] (lca->rmq)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  2. HDU 2874 Connections between cities(LCA Tarjan)

    Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...

  3. hdu-2874 Connections between cities(lca+tarjan+并查集)

    题目链接: Connections between cities Time Limit: 10000/5000 MS (Java/Others)     Memory Limit: 32768/327 ...

  4. HDU 2874 Connections between cities (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意是给你n个点,m条边(无向),q个询问.接下来m行,每行两个点一个边权,而且这个图不能有环路 ...

  5. [hdu2874]Connections between cities(LCA+并查集)

    题意:n棵树,求任意两点的最短距离. 解题关键:并查集判断两点是否位于一棵树上,然后求最短距离即可.此题可以直接对全部区间直接进行st表,因为first数组会将连接的两点的区间表示出来. //#pra ...

  6. hdu2876 Connections between cities(LCA倍增)

    图不一定联通,所以用并查集找各个联通块的祖先分别建图,之后就和LCA的步骤差不多了 #include<iostream> #include<cstring> #include& ...

  7. HDU 2874 Connections between cities(LCA)

    题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...

  8. hdu 2874 Connections between cities 带权lca判是否联通

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  9. hdu 2874 Connections between cities(st&rmq LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

随机推荐

  1. (Python爬虫02) 制定爬虫的学习计划了

    公司清退是件很让人郁闷的事情,精,气,神 都会受到影响.焦虑的心态,涣散的眼神, 无所适从的若无其事,人周茶凉的快速交接,各种担忧....平静的面孔波涛汹涌的心.... 认识聊天中满满的套路...还有 ...

  2. Python全栈 Web(边框、盒模型、背景)

    原文地址 https://yq.aliyun.com/articles/634926 ......................................................... ...

  3. Exact Inference in Graphical Models

    独立(Independence) 统计独立(Statistical Independence) 两个随机变量X,Y统计独立的条件是当且仅当其联合概率分布等于边际概率分布之积: \[ X \perp Y ...

  4. 关于mysql开元数据库的几个随想

    现在已经是凌晨了,昨天晚上写了我人生中的第一篇笔记,觉得没什么可写的,写了一个多小时都没写出什么,现在突然想写点东西了,这是一个比较有趣的问题,前两个月换了新工作,记得当初面试这份工作的时候面试到第三 ...

  5. opencv-学习笔记(1)常用函数和方法。

    opencv-学习笔记(1)常用函数和方法. cv2.imread(filename,falg) filename是文件名字 flag是读入的方式 cv2.MREAD_UNCHANGED :不进行转化 ...

  6. dice2win早期版本

    原理; https://medium.com/dapppub/fairdicedesign-315a4e253ad6 早期版本地址: https://etherscan.io/address/0xD1 ...

  7. 上层应用与wpa_supplicant,wpa_supplicant与kernel 相关socket创建交互分析

    单独拿出来,分析以下上层应用与wpa_supplicant   wpa_supplicant与kernel 的socket交互. 关联上层应用与wpa_supplicant的socket的创建.连接流 ...

  8. c# load xml 中文报错

    <?xml version="1.0" encoding="GB2312"?>

  9. Android中Parcelabel对象的使用和理解

    1. Parcelable接口 Interface for classes whose instances can be written to and restored from a Parcel. ...

  10. 【Docker 命令】- top命令

    docker top :查看容器中运行的进程信息,支持 ps 命令参数. 语法 docker top [OPTIONS] CONTAINER [ps OPTIONS] 容器运行时不一定有/bin/ba ...