Opengl数学markdown
# opengl数学
$$\begin{Bmatrix}
{A_{x}}\\
{A_{y}}\\
{A_{z}}\\
\end{Bmatrix} * \begin{Bmatrix}
{B_{x}}\\
{B_{y}}\\
{B_{z}}\\
\end{Bmatrix} =\begin{Bmatrix}
{A_{x}}{\cdot}{B_{z}}-{A{z}}{\cdot}{B_{y}}\\
{A_{y}}{\cdot}{B_{x}}-{A{x}}{\cdot}{B_{z}}\\
{A_{z}}{\cdot}{B_{y}}-{A{y}}{\cdot}{B_{z}}\\
\end{Bmatrix}$$
* 点与矩阵相乘
$$\begin{bmatrix}
{AX} + {BY} + {CZ} + {D}\\
{EX} + {FY} + {GZ} + {H}\\
{IX} + {JY} + {KZ} + {L}\\
{MX} + {NY} + {OZ} + {H}\\
\end{bmatrix} = \begin{bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{X}\\
{Y}\\
{Z}\\
{I}\\
\end{bmatrix}$$
* 加法
$$\begin{Bmatrix}
{A+a} & {B+b} & {C+c} & {D+d}\\
{E+e} & {F+f} & {G+g} & {H+h}\\
{I+i} & {J+j} & {K+k} & {L=l}\\
{M+m} & {N+n} & {O+o} & {P+p}\\
\end{Bmatrix} = \begin{Bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{Bmatrix} + \begin{Bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{Bmatrix}$$
* 矩阵相乘
$$\begin{bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{bmatrix} = \begin{bmatrix}
{A_{a}} + {B_{e}} + {C_{i}} + {C_{m}}&{Ab} + {Bf} + {Cj} + {Dn}&{Ad} + {Bh} + {cl} + {Dp} \\
{E_{a}} + {F_{e}} + {G_{i}} + {C_{m}}&{Eb} + {Ff} + {Gj} + {Hn}&{Ed} + {Fh} + {Gl} + {Hp} \\
{I_{a}} + {J_{e}} + {K_{i}} + {M_{m}}&{Ib} + {Jf} + {Kj} + {Ln}&{Ld} + {Jh} + {Kl} + {Lp} \\
{M_{a}} + {N_{e}} + {O_{i}} + {P_{m}}&{Mb} + {Nf} + {Oj} + {Pn}&{Md} + {Nh} + {Ol} + {Pp} \\
\end{bmatrix}$$
* 矩阵平移
$$\begin{pmatrix}
{X} + {T_{x}} \\
{Y} + {T_{y}} \\
{Z} + {T_{z}} \\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$
* 矩阵缩放
$$\begin{pmatrix}
{X} * {T_{x}} \\
{Y} * {T_{y}} \\
{Z} * {T_{z}} \\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$
* 围绕X轴旋转rfa度
$$\begin{pmatrix}
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {0}\\
{0} & {\cos}{\theta} & {-{\sin}{\theta}} & {0}\\
{0} & {\sin}{\theta} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$
* 围绕Y旋转rfa度
$$\begin{pmatrix}
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {0} & {\sin}{\theta} & {0}\\
{0} & {1} & {0} & {0}\\
{-{\sin}{\theta}} & {0} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$
围绕Z旋转rfa度
$$\begin{pmatrix}
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {-{\sin}{\theta}} & {0} & {0}\\
{\sin}{\theta} & {\cos}{\theta} & {0} & {0}\\
{0} & {0} & {1} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$
* 向量
$$V \bullet W = |\vec V||W|$$
$$\cos(\theta)=\frac{\vec V\bullet W}{\vec V||W|}$$
$$\cos(\theta)=V \bullet W$$
$$\theta=arccos(V \bullet W)$$
{A_{x}}\\
{A_{y}}\\
{A_{z}}\\
\end{Bmatrix} * \begin{Bmatrix}
{B_{x}}\\
{B_{y}}\\
{B_{z}}\\
\end{Bmatrix} = \begin{Bmatrix}
{A_{x}}{\cdot}{B_{z}}-{A{z}}{\cdot}{B_{y}}\\
{A_{y}}{\cdot}{B_{x}}-{A{x}}{\cdot}{B_{z}}\\
{A_{z}}{\cdot}{B_{y}}-{A{y}}{\cdot}{B_{z}}\\
\end{Bmatrix}\]
- 点与矩阵相乘
{AX} + {BY} + {CZ} + {D}\\
{EX} + {FY} + {GZ} + {H}\\
{IX} + {JY} + {KZ} + {L}\\
{MX} + {NY} + {OZ} + {H}\\
\end{bmatrix} = \begin{bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{X}\\
{Y}\\
{Z}\\
{I}\\
\end{bmatrix}\]
- 加法
{A+a} & {B+b} & {C+c} & {D+d}\\
{E+e} & {F+f} & {G+g} & {H+h}\\
{I+i} & {J+j} & {K+k} & {L=l}\\
{M+m} & {N+n} & {O+o} & {P+p}\\
\end{Bmatrix} = \begin{Bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{Bmatrix} + \begin{Bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{Bmatrix}\]
- 矩阵相乘
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{bmatrix} = \begin{bmatrix}
{A_{a}} + {B_{e}} + {C_{i}} + {C_{m}}&{Ab} + {Bf} + {Cj} + {Dn}&{Ad} + {Bh} + {cl} + {Dp} \\
{E_{a}} + {F_{e}} + {G_{i}} + {C_{m}}&{Eb} + {Ff} + {Gj} + {Hn}&{Ed} + {Fh} + {Gl} + {Hp} \\
{I_{a}} + {J_{e}} + {K_{i}} + {M_{m}}&{Ib} + {Jf} + {Kj} + {Ln}&{Ld} + {Jh} + {Kl} + {Lp} \\
{M_{a}} + {N_{e}} + {O_{i}} + {P_{m}}&{Mb} + {Nf} + {Oj} + {Pn}&{Md} + {Nh} + {Ol} + {Pp} \\
\end{bmatrix}\]
- 矩阵平移
{X} + {T_{x}} \\
{Y} + {T_{y}} \\
{Z} + {T_{z}} \\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
- 矩阵缩放
{X} * {T_{x}} \\
{Y} * {T_{y}} \\
{Z} * {T_{z}} \\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
- 围绕X轴旋转rfa度
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {0}\\
{0} & {\cos}{\theta} & {-{\sin}{\theta}} & {0}\\
{0} & {\sin}{\theta} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
- 围绕Y旋转rfa度
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {0} & {\sin}{\theta} & {0}\\
{0} & {1} & {0} & {0}\\
{-{\sin}{\theta}} & {0} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
围绕Z旋转rfa度
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {-{\sin}{\theta}} & {0} & {0}\\
{\sin}{\theta} & {\cos}{\theta} & {0} & {0}\\
{0} & {0} & {1} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
向量
\[V \bullet W = |\vec V||W|
\]\[\cos(\theta)=\frac{\vec V\bullet W}{\vec V||W|}
\]\[\cos(\theta)=V \bullet W
\]\[\theta=arccos(V \bullet W)
\]
aaaaaaaa
Opengl数学markdown的更多相关文章
- OpenGL阴影,Shadow Mapping(附源程序)
实验平台:Win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): 本文描述图形学的两个最常用的阴影技术之一,Shadow Mapping方法(另一种是Sh ...
- MarkDown+LaTex 数学内容编辑样例收集
$\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...
- OpenGL坐标变换及其数学原理,两种摄像机交互模型(附源程序)
实验平台:win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): a.鼠标拖拽旋转物体,类似于OGRE中的“OgreBites::CameraStyle: ...
- $MarkDown$ 中使用$ \LaTeX$ 数学式
最近看了些机器学习的书籍, 想写点笔记记录下. 由于需要使用到很多的数学推导, 所以就看了下如何在 Markdown 中插入数学式,发现在 Markdown 中可以直接插入 LaTeX 数学式. 排版 ...
- 三维投影总结:数学原理、投影几何、OpenGL教程、我的方法
如果要得到pose视图,除非有精密的测量方法,否则进行大量的样本采集时很耗时耗力的.可以采取一些取巧的方法,正如A Survey on Partial of 3d shapes,描述的,可以利用已得到 ...
- OpenGL编程(八)3D数学与坐标变换
笛卡尔坐标 一维坐标系 以一个点为原点,选定一个方向为正方向(相反的方向为反方向),以一定的距离为标尺建立一维坐标系.一维坐标系一般应用于描述在一维空间中的距离. 举个例子:一维坐标系好比一条拉直的电 ...
- markdown常用数学符号小结
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 markdown使用LaTex输入数学公式类 Markdown数学符号&公式 CSDN-MarkDown编辑器使用手册(4)- ...
- 【转载】markdown数学常用公式箭头符号
来源1:https://www.jianshu.com/p/3f01c5658356 来源2:https://blog.csdn.net/smstong/article/details/4434063 ...
- 一文学会在Markdown中编辑数学符号与公式
在用Markdown写博客时会涉及到数学符号与公式的编辑,下面进行汇总.随手记录,方便你我他. 行内公式:将公式插入到本行内 $0.98^{365} \approx 0.0006$ 我的365天:\( ...
- Opengl正交矩阵 glOrthof 数学原理(转)
http://blog.sina.com.cn/s/blog_6084f588010192ug.html 在opengles1.1中设置正交矩阵只要一个函数调用就可以了:glOrthof,但是open ...
随机推荐
- redhat安装opencv2.4.13
1.官网下载OpenCV2.4.5 http://opencv.org/ 解压到home/用户名/opencv2.4.5 2.安装cmake $sudo apt-get install cmake ...
- 【当年笔记】Collection集合部分
集合继承关系图 1)Vector 特点:线程安全,消耗偏大 2)ArrayList 特点:基于数组实现,随机访问某个元素效率高.集和头尾之间包括头插入删除操作效率较低,因为插入元素后,其他元素要后移. ...
- springcloud(二) - 服务调用Feign&openFeign
功能介绍:动态代理的方式,简化请求其他服务的开发成本,更好得对请求地址组装.接受返回信息.返回参数解析等 Feign和OpenFeign区别: OpenFeign实现了Feign的基础功能,同时支持 ...
- the origin of month name in English
序号 月份 简述 详述 1 January Janus神 罗马神话的神Janus,双面,门神 2 February Februa节 古罗马人都要杀牲饮酒,欢庆菲勃卢姆节(Februarius).忏悔自 ...
- docker中搭建Ubuntu:16.04+python3.6+django环境
用vim 新建一个Dockerfile和sources.list文件,在里面添加如下内容. #sources.list deb http://mirrors.163.com/ubuntu/ xenia ...
- macOS Big Sur 设置JAVA_HOME
默认JAVA_HOME指向的是: /Library/Internet Plug-Ins/JavaAppletPlugin.plugin/Contents/Home 这个不是我们自己安装的jdk,另外本 ...
- Android Studio: how to remove/update the “Created by” comment added to all new classes?
By default Android Studio automatically adds a header comment to all new classes, e.g. /** * Created ...
- mysql在windows下安装
参考博客:https://blog.csdn.net/weixin_43423484/article/details/124408565
- Objectarx2016在VS2012里面创建失败的解决办法
在网上找了很多办法,有说需要管理员权限运行msi的,还有什么ucs的,经过我的尝试,最后找到了办法 解决办法是,在vs2012的根目录下>>vc>>vcprojects> ...
- cv::inRange
// 简单实现 cv::namedWindow("Example 2-3", cv::WINDOW_AUTOSIZE); cv::VideoCapture cap; cap.ope ...