Opengl数学markdown
# opengl数学
$$\begin{Bmatrix}
{A_{x}}\\
{A_{y}}\\
{A_{z}}\\
\end{Bmatrix} * \begin{Bmatrix}
{B_{x}}\\
{B_{y}}\\
{B_{z}}\\
\end{Bmatrix} =\begin{Bmatrix}
{A_{x}}{\cdot}{B_{z}}-{A{z}}{\cdot}{B_{y}}\\
{A_{y}}{\cdot}{B_{x}}-{A{x}}{\cdot}{B_{z}}\\
{A_{z}}{\cdot}{B_{y}}-{A{y}}{\cdot}{B_{z}}\\
\end{Bmatrix}$$
* 点与矩阵相乘
$$\begin{bmatrix}
{AX} + {BY} + {CZ} + {D}\\
{EX} + {FY} + {GZ} + {H}\\
{IX} + {JY} + {KZ} + {L}\\
{MX} + {NY} + {OZ} + {H}\\
\end{bmatrix} = \begin{bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{X}\\
{Y}\\
{Z}\\
{I}\\
\end{bmatrix}$$ 
* 加法
$$\begin{Bmatrix}
{A+a} & {B+b} & {C+c} & {D+d}\\
{E+e} & {F+f} & {G+g} & {H+h}\\
{I+i} & {J+j} & {K+k} & {L=l}\\
{M+m} & {N+n} & {O+o} & {P+p}\\
\end{Bmatrix} = \begin{Bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{Bmatrix} + \begin{Bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{Bmatrix}$$
* 矩阵相乘
$$\begin{bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{bmatrix} = \begin{bmatrix}
{A_{a}} + {B_{e}} + {C_{i}} + {C_{m}}&{Ab} + {Bf} + {Cj} + {Dn}&{Ad} + {Bh} + {cl} + {Dp} \\
{E_{a}} + {F_{e}} + {G_{i}} + {C_{m}}&{Eb} + {Ff} + {Gj} + {Hn}&{Ed} + {Fh} + {Gl} + {Hp} \\
{I_{a}} + {J_{e}} + {K_{i}} + {M_{m}}&{Ib} + {Jf} + {Kj} + {Ln}&{Ld} + {Jh} + {Kl} + {Lp} \\
{M_{a}} + {N_{e}} + {O_{i}} + {P_{m}}&{Mb} + {Nf} + {Oj} + {Pn}&{Md} + {Nh} + {Ol} + {Pp} \\
\end{bmatrix}$$ 
* 矩阵平移
$$\begin{pmatrix}
{X} + {T_{x}} \\
{Y} + {T_{y}} \\
{Z} + {T_{z}} \\
   {1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$ 
* 矩阵缩放
$$\begin{pmatrix}
{X} * {T_{x}} \\
{Y} * {T_{y}} \\
{Z} * {T_{z}} \\
   {1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$ 
* 围绕X轴旋转rfa度
$$\begin{pmatrix}
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
   {1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {0}\\
{0} & {\cos}{\theta} & {-{\sin}{\theta}} & {0}\\
{0} & {\sin}{\theta} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$ 
* 围绕Y旋转rfa度
$$\begin{pmatrix}
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
   {1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {0} & {\sin}{\theta} & {0}\\
{0} & {1} & {0} & {0}\\
{-{\sin}{\theta}} & {0} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$ 
围绕Z旋转rfa度
$$\begin{pmatrix}
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
   {1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {-{\sin}{\theta}} & {0} & {0}\\
{\sin}{\theta} & {\cos}{\theta} & {0} & {0}\\
{0} & {0} & {1} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}$$ 
* 向量
  $$V \bullet W = |\vec V||W|$$
  $$\cos(\theta)=\frac{\vec V\bullet W}{\vec V||W|}$$
  $$\cos(\theta)=V \bullet W$$
  $$\theta=arccos(V \bullet W)$$
{A_{x}}\\
{A_{y}}\\
{A_{z}}\\
\end{Bmatrix} * \begin{Bmatrix}
{B_{x}}\\
{B_{y}}\\
{B_{z}}\\
\end{Bmatrix} = \begin{Bmatrix}
{A_{x}}{\cdot}{B_{z}}-{A{z}}{\cdot}{B_{y}}\\
{A_{y}}{\cdot}{B_{x}}-{A{x}}{\cdot}{B_{z}}\\
{A_{z}}{\cdot}{B_{y}}-{A{y}}{\cdot}{B_{z}}\\
\end{Bmatrix}\]
- 点与矩阵相乘
 
{AX} + {BY} + {CZ} + {D}\\
{EX} + {FY} + {GZ} + {H}\\
{IX} + {JY} + {KZ} + {L}\\
{MX} + {NY} + {OZ} + {H}\\
\end{bmatrix} = \begin{bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{X}\\
{Y}\\
{Z}\\
{I}\\
\end{bmatrix}\]
- 加法
 
{A+a} & {B+b} & {C+c} & {D+d}\\
{E+e} & {F+f} & {G+g} & {H+h}\\
{I+i} & {J+j} & {K+k} & {L=l}\\
{M+m} & {N+n} & {O+o} & {P+p}\\
\end{Bmatrix} = \begin{Bmatrix}
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{Bmatrix} + \begin{Bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{Bmatrix}\]
- 矩阵相乘
 
{A} & {B} & {C} & {D}\\
{E} & {F} & {G} & {H}\\
{I} & {J} & {K} & {L}\\
{M} & {N} & {O} & {P}\\
\end{bmatrix} * \begin{bmatrix}
{a} & {b} & {c} & {d}\\
{e} & {f} & {g} & {h}\\
{i} & {j} & {k} & {l}\\
{m} & {n} & {o} & {p}\\
\end{bmatrix} = \begin{bmatrix}
{A_{a}} + {B_{e}} + {C_{i}} + {C_{m}}&{Ab} + {Bf} + {Cj} + {Dn}&{Ad} + {Bh} + {cl} + {Dp} \\
{E_{a}} + {F_{e}} + {G_{i}} + {C_{m}}&{Eb} + {Ff} + {Gj} + {Hn}&{Ed} + {Fh} + {Gl} + {Hp} \\
{I_{a}} + {J_{e}} + {K_{i}} + {M_{m}}&{Ib} + {Jf} + {Kj} + {Ln}&{Ld} + {Jh} + {Kl} + {Lp} \\
{M_{a}} + {N_{e}} + {O_{i}} + {P_{m}}&{Mb} + {Nf} + {Oj} + {Pn}&{Md} + {Nh} + {Ol} + {Pp} \\
\end{bmatrix}\]
- 矩阵平移
 
{X} + {T_{x}} \\
{Y} + {T_{y}} \\
{Z} + {T_{z}} \\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
- 矩阵缩放
 
{X} * {T_{x}} \\
{Y} * {T_{y}} \\
{Z} * {T_{z}} \\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {T_{x}}\\
{0} & {1} & {0} & {T_{y}}\\
{0} & {0} & {1} & {T_{z}}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
- 围绕X轴旋转rfa度
 
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{1} & {0} & {0} & {0}\\
{0} & {\cos}{\theta} & {-{\sin}{\theta}} & {0}\\
{0} & {\sin}{\theta} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
- 围绕Y旋转rfa度
 
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {0} & {\sin}{\theta} & {0}\\
{0} & {1} & {0} & {0}\\
{-{\sin}{\theta}} & {0} & {\cos}{\theta} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
围绕Z旋转rfa度
{X}^{\prime}\\
{Y}^{\prime}\\
{Z}^{\prime}\\
{1}\\
\end{pmatrix} = \begin{bmatrix}
{\cos}{\theta} & {-{\sin}{\theta}} & {0} & {0}\\
{\sin}{\theta} & {\cos}{\theta} & {0} & {0}\\
{0} & {0} & {1} & {0}\\
{0} & {0} & {0} & {1}\\
\end{bmatrix} X \begin{pmatrix}
{X}\\
{Y}\\
{Z}\\
{1}\\
\end{pmatrix}\]
向量
\[V \bullet W = |\vec V||W|
\]\[\cos(\theta)=\frac{\vec V\bullet W}{\vec V||W|}
\]\[\cos(\theta)=V \bullet W
\]\[\theta=arccos(V \bullet W)
\]
aaaaaaaa
Opengl数学markdown的更多相关文章
- OpenGL阴影,Shadow Mapping(附源程序)
		
实验平台:Win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): 本文描述图形学的两个最常用的阴影技术之一,Shadow Mapping方法(另一种是Sh ...
 - MarkDown+LaTex  数学内容编辑样例收集
		
$\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...
 - OpenGL坐标变换及其数学原理,两种摄像机交互模型(附源程序)
		
实验平台:win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): a.鼠标拖拽旋转物体,类似于OGRE中的“OgreBites::CameraStyle: ...
 - $MarkDown$ 中使用$ \LaTeX$ 数学式
		
最近看了些机器学习的书籍, 想写点笔记记录下. 由于需要使用到很多的数学推导, 所以就看了下如何在 Markdown 中插入数学式,发现在 Markdown 中可以直接插入 LaTeX 数学式. 排版 ...
 - 三维投影总结:数学原理、投影几何、OpenGL教程、我的方法
		
如果要得到pose视图,除非有精密的测量方法,否则进行大量的样本采集时很耗时耗力的.可以采取一些取巧的方法,正如A Survey on Partial of 3d shapes,描述的,可以利用已得到 ...
 - OpenGL编程(八)3D数学与坐标变换
		
笛卡尔坐标 一维坐标系 以一个点为原点,选定一个方向为正方向(相反的方向为反方向),以一定的距离为标尺建立一维坐标系.一维坐标系一般应用于描述在一维空间中的距离. 举个例子:一维坐标系好比一条拉直的电 ...
 - markdown常用数学符号小结
		
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 markdown使用LaTex输入数学公式类 Markdown数学符号&公式 CSDN-MarkDown编辑器使用手册(4)- ...
 - 【转载】markdown数学常用公式箭头符号
		
来源1:https://www.jianshu.com/p/3f01c5658356 来源2:https://blog.csdn.net/smstong/article/details/4434063 ...
 - 一文学会在Markdown中编辑数学符号与公式
		
在用Markdown写博客时会涉及到数学符号与公式的编辑,下面进行汇总.随手记录,方便你我他. 行内公式:将公式插入到本行内 $0.98^{365} \approx 0.0006$ 我的365天:\( ...
 - Opengl正交矩阵 glOrthof 数学原理(转)
		
http://blog.sina.com.cn/s/blog_6084f588010192ug.html 在opengles1.1中设置正交矩阵只要一个函数调用就可以了:glOrthof,但是open ...
 
随机推荐
- GIT Authentication failed for错误问题处理
			
1. Settings ==> Developer settings ==> Personal access tokens ==> Generate new token 生成新的 ...
 - Ginan-PEA例程下载
			
输入以下命令可在Ubuntu系统中进行下载,但受到网络限制并不能有效下载或者下载很慢 python3 scripts/download_examples.py 通过阅读python脚本,可将下载网址拷 ...
 - ES6-moudle
			
一.基础认知 结合案例体验module: 前面模拟模块是用立即执行的匿名函数,需要把某些通过window暴露出去,所以还是不能消除全局变量 module模块系统需要服务器环境才能正常执行,在html文 ...
 - SAP SD VA01 销售订单中的自动价格更新
			
场景 :当用户使用假定物料" A"创建销售订单时,确定了价格,但随后用户意识到需要更改物料,因此他们更改了订单中的物料. 现在,它显示价格已经重新确定,但是在项目条件页面中时,他们 ...
 - C# VS2019修改工程名
			
1.修改解决方案的名称:选择解决方案的名称,右键重命名即可 2.修改项目名称,方法同上,不再赘述 3.修改项目的程序集名称和默认命名空间:选择项目,右键属性,弹出如下对话框 4.替换项目或解决方案中的 ...
 - 14-K8S之helm入门到逃跑
			
目录 helm入门 1.helm介绍 2.helm核心术语 3.helm下载和安装 3.1以helm3.6为测试实例 3.2以helm3.7.2为例 helm v2版本在集群上部署Tiller 1.创 ...
 - nginx,git,maven面试题
			
1.简述一下什么是Nginx,它有什么优势和功能? Nginx是一个web服务器和方向代理服务器,用于HTTP.HTTPS.SMTP.POP3和IMAP协议.因 它的稳定性.丰富的功能集.示例配置文件 ...
 - A表某字段==B表某字段   更新A表的数据
			
update mls_supplytask t1 -- 供应商认证任务 JOIN mls_sup_cert_report t2 -- 供应商认证报告 on t1.id = t2.certTaskId ...
 - firewalld 防火墙centos7
			
在centos7中iptables已经废弃不用 firewalld命令: 查看所有规则 firewall-cmd --list-all 用命令行 来 允许40ip 访问本机 firewall-cmd ...
 - yestoday once more
			
夏日的光为百叶窗所驯服,褪去了令人刺痛的热烈.yestoday once more~ 耳机里传来那熟悉的旋律,恍惚间仿佛回到了十五年前的那个午后,老式收音机里放着同样的歌曲,对面办公桌旁某个少年正惶恐 ...