LP两阶段法(一阶段)
\begin{equation}\begin{aligned}
\min \quad & z=\mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A} \mathbf{x}=\mathbf{b} \\
& \ell \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}\end{equation}
The types of the components
of x are defined as

\begin{equation}
\begin{aligned}
&\mathcal{U}=\left\{k: k \in \mathcal{R}, x_{k}=u_{k}\right\}\\
&\mathcal{M}=\left\{i: x_{k_{i}}<0, i \in \mathcal{I}_{0} \cup \mathcal{I}_{1} \cup \mathcal{I}_{2}\right\}\\
&\mathcal{P}=\left\{i: x_{k_{i}}>u_{k_{i}}, i \in \mathcal{I}_{0} \cup \mathcal{I}_{1}\right\}\\
&\mathcal{F}=\mathcal{I} \backslash(\mathcal{M} \cup \mathcal{P})
\end{aligned}
\end{equation}
Using notation $\beta = x_{\mathcal{B}}$ we can simplify the reference to basic variables. As a measure of infeasibility we use the negative of the sum of violations:
$$w=\sum_{i \in \mathcal{M}} \beta_{i}-\sum_{i \in \mathcal{P}}\left(\beta_{i}-v_{i}\right)$$
Obviously, $w \geq 0$. If $w = 0$ then both $\mathcal{M}$ and $\mathcal{P}$ are empty and the
solution is feasible.
So it is translated into
\begin{equation}\begin{aligned}
\max \quad & w \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} \\
& \ell \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}\end{equation}
We can investigate how feasibility of the basis is affected if a nonbasic
variable is displaced by t in the feasible direction. First, assume the
displacement is nonnegative, $t \geq O$. The i-th basic variable as a function of t is
$$\beta_{i}(t)=\beta_{i}-t \alpha_{q}^{i}$$
$\boldsymbol{\alpha}_{q}=\mathbf{B}^{-1} \mathbf{a}_{q}, \boldsymbol{\beta}=\mathbf{B}^{-1} \mathbf{b}_{\mathcal{U}}, \boldsymbol{\beta}(t)=\mathbf{x}_{\mathcal{B}}(t)$.
Given $\mathcal{M} \cup \mathcal{P} \neq \emptyset$ and $j \in \mathcal{R}$ with . w can be
improved by increasing the value of $x_{j}$ only if
$$d_{j}=\sum_{i \in \mathcal{M}} \alpha_{j}^{i}-\sum_{i \in \mathcal{P}} \alpha_{j}^{i}<0$$
If the infeasibility sets M and P remain unchanged only for t = 0
then the basis is degenerate.
A feasible displacement of a variable can also be negative. In this
case, w can be improved by decreasing Xj if $d_j >0$.
Define vector h with components
$$h_{i}=\left\{\begin{array}{ll}
1, & \text { if } i \in \mathcal{M} \\
-1, & \text { if } i \in \mathcal{P} \\
0, & \text { otherwise }
\end{array}\right.$$
It is easy to see that
$$d_{j}=\mathbf{h}^{T} \boldsymbol{\alpha}_{j}=\mathbf{h}^{T} \mathbf{B}^{-1} \mathbf{a}_{j}$$
just like the
phase-2 simplex multiplier $\pi$, by
$$\boldsymbol{\phi}^{T}=\mathbf{h}^{T} \mathbf{B}^{-1}$$
Define
$$\begin{array}{l}
K^{-}=\left\{\begin{array}{ll}
0, & \text { if } K \geq 0 \\
K, & \text { if } K<0
\end{array}\right. \\
K^{+}=\left\{\begin{array}{ll}
K, & \text { if } K>0 \\
0, & \text { if } K \leq 0
\end{array}\right.
\end{array}$$
The measure of infeasibility as a function of t can be expressed as
$$\begin{aligned}
w(t) &=\sum_{i \in \mathcal{I}_{\ell}}\left[\beta_{i}(t)\right]^{-}-\sum_{i \in \mathcal{I}_{u}}\left[\beta_{i}(t)-v_{i}\right]^{+} \\
&=\sum_{i \in \mathcal{I}_{\ell}}\left[\beta_{i}-t \alpha_{i}\right]^{-}-\sum_{i \in \mathcal{I}_{u}}\left[\beta_{i}-t \alpha_{i}-v_{i}\right]^{+}
\end{aligned}$$
where $\mathcal{I}_{\ell}=\mathcal{I}_{0} \cup \mathcal{I}_{1} \cup \mathcal{I}_{2}$ (index set of basic variables with 0 lower bound) and $\mathcal{I}_{u}=\mathcal{I}_{0} \cup \mathcal{I}_{1}$
(basic variables with finite upper bound).
Analysis of w(t)





The contribution of the $\beta_{i}(t)$ to $w(t)$ is illustrated
in figures 9.4, 9.5 and 9.6.
When t moves away from 0 in the positive direction the first change in
the feasibility status of one of the basic variables occurs when t reaches
the first break point. It is the smallest of the ratios defined in (9.87) and
(9.88). Since we want to pass this point and want to do further steps we
assume that the break points are sorted into ascending order:
$$0 \leq t_{1} \leq \cdots \leq t_{S}$$
t if $x_q$ is the selected improving variable
coming in from lower bound then the rate of change of $w(t)$ is $-d_q$. Therefore, in the [0, tIl interval w(t) increases by -dqtl.
Denoting
$$r_{1}=-d_{q}=-\left(\sum_{i \in \mathcal{M}} \alpha_{i}-\sum_{i \in \mathcal{P}} \alpha_{i}\right)$$
$$r_{k+1}=r_{k}-\left|\alpha_{j_{k}}\right|, \quad k=1, \ldots, S$$
The maximum of w(t) is defined by index s for which
$$\begin{array}{lll}
r_{s}>0 & \text { and } & r_{s+1} \leq 0
\end{array}$$
$$w\left(t_{k}\right)=w\left(t_{k-1}\right)+\left(t_{k}-t_{k-1}\right) r_{k}, \quad k=1, \ldots, s$$
LP两阶段法(一阶段)的更多相关文章
- 分布式事务 & 两阶段提交 & 三阶段提交
可以参考这篇文章: http://blog.csdn.net/whycold/article/details/47702133 两阶段提交保证了分布式事务的原子性,这些子事务要么都做,要么都不做. 而 ...
- javaScript 变量提升 var let const,以及JS 的解析阶段和执行阶段
我们先来看一道面试题,大家猜想一下,下面这段代码,打印出来的结果是什么 var name = 'World!'; (function () { if (typeof name === 'undefin ...
- PHP程序员的技术成长规划 第一阶段:基础阶段
第一阶段:基础阶段(基础PHP程序员) 重点:把LNMP搞熟练(核心是安装配置基本操作)目标:能够完成基本的LNMP系统安装,简单配置维护:能够用PHP源码做基本的简单系统的PHP开发:能够在PHP中 ...
- 分布式事务解决方案(一) 2阶段提交 & 3阶段提交 & TCC
参考文档:http://blog.jobbole.com/95632/https://yq.aliyun.com/articles/582282?spm=a2c4e.11163080.searchbl ...
- web测试一般分为那几个阶段,哪些阶段是可以用工具实现的,都有些什么工具,哪些阶段必须要人工手动来实现呢?
这是我在知乎上遇到的一个问题: web测试一般分为那几个阶段,哪些阶段是可以用工具实现的,都有些什么工具,哪些阶段必须要人工手动来实现呢? 首先这个提问本身就是有问题的, 没有哪个阶段是用工具实现的, ...
- MT【168】还是两根法
设二次函数$f(x)=ax^2+bx+c(a>0)$,方程$f(x)=x$的两根$x_1,x_2$满足$0<x_1<x_2<\dfrac{1}{a}$,(Ⅰ)当$x\in(0, ...
- PHP程序员的技术成长规划 第三阶段:高级阶段
第三阶段:高级阶段 (高级PHP程序员)重点:除了基本的LNMP程序,还能够在某个方向或领域有深入学习.(纵深维度发展)目标:除了能够完成基本的PHP业务开发,还能够解决大部分深入复杂的技术问题,并且 ...
- rest_famework 增删改查初第三阶段(高级,此阶段是优化第二阶段的代码)的使用
url: re_path('authors/$', views.AuthorView.as_view()), re_path('book/(?P<pk>\d+)/$', views.Boo ...
- rest_famework 增删改查初第四阶段(最高级,此阶段是优化第三阶段的代码)的使用
两个url 共用一个视图 url url(r'^books/$', views.BookViewSet.as_view({"get":"list"," ...
- 分布式事务(一)两阶段提交及JTA
原创文章,同步发自作者个人博客 http://www.jasongj.com/big_data/two_phase_commit/ 分布式事务 分布式事务简介 分布式事务是指会涉及到操作多个数据库(或 ...
随机推荐
- 2019-2020-1 20199318《Linux内核原理与分析》第十一周作业
<Linux内核原理与分析> 第十一周作业 一.预备知识 什么是ShellShock? Shellshock,又称Bashdoor,是在Unix中广泛使用的Bash shell中的一个安全 ...
- Mysql 非幂等性
幂等性就是指:一个幂等操作任其执行多次所产生的影响均与一次执行的影响相同. -- 幂等性在分布式高并发中很常见,如不能重复点赞.电商订单库存数要一致等. MySQL解决非幂等性常用方法: 1.乐观锁 ...
- jp@gc - PerfMon Metrics Collector:服务器性能监测控件
1.下载客户端及服务器端插件: 参考如下地址:https://blog.csdn.net/qq_36643889/article/details/119142106 JMeterPlugins-Sta ...
- 【APT】APT-C-41下载器组件样本分析
前言 APT-C-41(又被称为蓝色魔眼.Promethium.StrongPity),该APT组织最早的攻击活动可以追溯到2012年.该组织主要针对意大利.土耳其.比利时.叙利亚.欧洲等地区和国家进 ...
- Windows系统Redis集群搭建
一.参考网址 https://mp.weixin.qq.com/s/ImdEJTdAmCFJsT55rici0Q 二.Redis版本 注意:搭建windows版的redis集群,redis的版本需要5 ...
- lvds接口
1.lvds就是差分信号接口,tft-lcd屏幕,一种常用的接口. 2.有3种标准,18bit, 24bit(JEIDA) 与 24bit(VESA) 详细看https://www.topwaydis ...
- SpringBoot测试类注入Bean失败原因
首先针对SpringBoot的测试类,2.2版本之前和2.2版本之后是不一样的,在2.2版本之前需要贴注解@SpringBootTest和@RunWith(SpringRunner.class)需要在 ...
- homework2软件方法论
什么是软件工程方法论? 1.软件工程是一个方法论,就是我们在开始一个项目时,大体框架一定要有这么一个概念,而具体实施时,必须根据公司一些特点,优化项目开发的流程,这样才是有实效而方法论只是软件工程的结 ...
- EBI数据库下载数据
EBI网址链接: https://www.ebi.ac.uk 方法:直接从ncbi上面找到想要下载数据的SRR号然后去EBI里面直接搜索即可得到. 底部就是想要下载的fastq文件了: 然后右键复制链 ...
- 狐漠漠养成日记 Cp.00001 开始养成计划
开始养成计划 今天是我开始这个"狐漠漠养成计划"的第一天(划掉). 看来是昨天出门前忘记保存了,昨天写的几百字内容全都没有了,今天其实已经是计划开始的第二天了. 因为昨天晚上出去喝 ...