2023.2.26【模板】扩展Lucas定理
2023.2.26【模板】扩展Lucas定理
题目概述
求\(\binom {n}{m} mod\) \(p\) 的值,不保证\(p\)为质数
算法流程
(扩展和普通算法毫无关系)
由于\(p\)不是质数,我们考虑[SDOI2010]古代猪文 - 洛谷中的处理方法:将\(p\)质因数分解得:
\]
所以我们考虑计算$\binom nm mod $ \({p_i}^{c_i}\)的值,再用CRT合并即可
展开上式:
\]
我们发现由于\(m!(n - m)!\)中可能含有因数p,我们无法求出\(m!(n - m)!\)模\({p_i}^{c_i}\)意义下的逆元,所以我们考虑除去三个数中所有的p因子,假设\(p^x | n!\)且\(p^{x+1} \nmid n!\),即x是\(n!\)中p因子的个数(对于\(m!\)和\((n - m)!\)同理)
\]
由于\(\frac{n!}{p^x}、\frac{m!}{p^y}、\frac{(n - m)!}{p^z}\)三式同构,我们考虑计算其中一个式子(以下用\(p\)替换\(p_i\))
\]
展开为
\]
提出p的倍数
\]
即
\]
如果暴力计算\(\Pi_{i = 1;i \not\equiv 0}^{n}\)复杂度过高,不难发现其有一个循环节,即每过p个数就会少乘上第p个数,又因为\({p_i}^{c_i}+ r \equiv r\ mod\ {p_i}^{c_i}\),所以我们以\({p_i}^{c_i}\)作为这个循环节
\]
对于\(\Pi_{i = 1;i \not\equiv 0}^{p^{c_i}}\)和\(\Pi_{i = {p^{c_i}}\lfloor\frac{n}{p^{c_i}}\rfloor;i \not\equiv 0}^{n}\),暴力计算即可
不管\(x\)取何值,最终p因子都会消除,所以计算时去掉\(p^{\lfloor \frac np \rfloor}\)
因为\(\lfloor \frac np \rfloor!\)中可能含有p因子,所以我们将其进行递归:
设\(f(n) = \frac {n!}{p^x}\ mod \ {p}^{c_i}\),则:
\]
根据此式递推即可,时间复杂度为\(O(log_pn)\),不会证明qwq
对于外面的\(p^{x - y - z}\),只要求出\(x、y、z\)的值就可以计算了
观察以上函数可知,每次在\(f(n)\)这一层就会去掉\(\lfloor \frac np \rfloor\)个p因子
定义\(g(n)\)为\(n!\)中p因子的个数,则:
\]
此结论对于其他题目也同样有效
所以原始式子就转化成了
\]
因为去掉了p因子,所以\(f(m)\)和\(f(n - m)\)与\(p^{c_i}\)互质,可以求逆元
因为\(p^{c_i}\)不是质数,不能直接用费马小定理计算,所以我们采用\(exgcd\)求逆元
最后进行CRT合并答案
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll res[101],d[101],zs[101],tot = 0,M[101];
inline ll g(ll n,ll p)
{
if(n == 0) return 0;
return g(n / p,p) + n / p;
}
inline ll ksm(ll base,ll pts,ll mod)
{
ll ret = 1;
for(;pts > 0;pts >>= 1,base = base * base % mod)
if(pts & 1)
ret = ret * base % mod;
return ret;
}
inline ll F(ll n,ll p,ll k)
{
if(n == 0) return 1;
ll P = ksm(p,k,1e18 + 1);
ll mul = 1;
for(ll i = 1;i <= P;i++)
if(i % p)
mul = mul * i % P;
mul = ksm(mul,n / P,P);
for(ll i = P * (n / P);i <= n;i++)
if(i % p)
mul = mul * (i % P) % P;
return F(n / p,p,k) * mul % P;
}
inline void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b == 0)
{
x = 1;
y = 0;
return;
}
ll tmp;
exgcd(b,a % b,x,y);
tmp = y;
y = x - (a / b) * y;
x = tmp;
}
inline ll exlucas(ll n,ll m,ll p)
{
ll tmp = p;
for(ll i = 2;i <= sqrt(p);i++)
{
if(tmp % i == 0)
{
++tot;
d[tot] = i;
while(tmp % i == 0)
{
tmp /= i;
++zs[tot];
}
}
}
if(tmp != 1)
{
++tot;
d[tot] = tmp;
zs[tot] = 1;
}
for(int i = 1;i <= tot;i++)
{
ll P = ksm(d[i],zs[i],1e18 + 1);
ll inv1,inv2,yy;
exgcd(F(m,d[i],zs[i]),P,inv1,yy);
exgcd(F(n - m,d[i],zs[i]),P,inv2,yy);
inv1 = (inv1 % P + P) % P;
inv2 = (inv2 % P + P) % P;
res[i] = F(n,d[i],zs[i]) * inv1 % P * inv2 % P * ksm(d[i],g(n,d[i]) - g(m,d[i]) - g(n - m,d[i]),P) % P;
M[i] = P;
}
ll ans = 0;
for(int i = 1;i <= tot;i++)
{
ll inv,yy;
exgcd(p / M[i],M[i],inv,yy);
inv = (inv % M[i] + M[i]) % M[i];
ans = (ans + res[i] * (p / M[i]) % p * inv % p) % p;
}
return ans;
}
int main()
{
ll n,m,p;
cin>>n>>m>>p;
cout<<exlucas(n,m,p);
return 0;
}
2023.2.26【模板】扩展Lucas定理的更多相关文章
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- BZOJ - 2142 礼物 (扩展Lucas定理)
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...
- 【learning】 扩展lucas定理
首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\bi ...
- [bzoj2142]礼物(扩展lucas定理+中国剩余定理)
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...
- Lucas定理和扩展Lucas定理
1.Lucas定理 首先给出式子:\(C_n^m\%p = C_{\lfloor\frac{n}{p}\rfloor}^{\lfloor\frac{m}{p}\rfloor} * C_{n\%p}^{ ...
- Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...
- [笔记] 扩展Lucas定理
[笔记] 扩展\(Lucas\)定理 \(Lucas\)定理:\(\binom{n}{m} \equiv \binom{n/P}{m/P} \binom{n \% P}{m \% P}\pmod{P} ...
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
- BZOJ3129/洛谷P3301方程(SDOI2013)容斥原理+扩展Lucas定理
题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1 ...
- 扩展Lucas定理
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...
随机推荐
- 网络I/O模型 解读
网络.内核 网卡能「接收所有在网络上传输的信号」,但正常情况下只接受发送到该电脑的帧和广播帧,将其余的帧丢弃. 所以网络 I/O 其实是网络与服务端(电脑内存)之间的输入与输出 内核 查看内核版本 : ...
- <一>智能指针基础
代码1 int main(){ //裸指针,手动开辟,需要自己释放,如果忘记了或者因为 //程序逻辑导致p没有释放,那么就会导致内存泄漏 int *p=new int(10); if(***){ re ...
- java面试题-常用框架
Spring Spring 是什么 一个开发框架,一个容器,主要由面向切面AOP 和依赖注入DI两个方面,外加一些工具 AOP和IOC AOP 面向切面 AOP是一种编程思想,主要是逻辑分离, 使业务 ...
- 【kafka】JDBC connector进行表数据增量同步过程中的源表与目标表时间不一致问题解决
〇.参考资料 一.现象 1.Oracle源表数据 2.PG同步后的表数据 3.现象 时间不一致,差了8个小时 4.查看对应的connector信息 (1)source { "connecto ...
- python 运算优先级
python 运算优先级,请见下图
- 嵌入式Linux Qt移植详细过程
嵌入式Linux下的Qt移植详细过程 开发说明 前段时间需要用开发板写一个下位机程序,是基于Linux系统,就想着用Qt来写,于是上网找教程看如何移植到开发板上.由于我不熟悉嵌入式Linux,加上网上 ...
- pytest.ini配置文件格式
[pytest] # 命令行参数,用空格分隔 addopts = -v -n=2 # 配置测试用例所在文件夹 testpaths = ./pytest_1 # 配置需要执行的模块文件名称 python ...
- Windows上将linux目录映射网络驱动器
我有两台PC,一台操作用的Windows,一台linux.为了方便对linux目录的文件操作.需要在Windows上将linux中的/fdsk目录映射为网络驱动器. a.首先要将linux安装成为sa ...
- 基于U-Net网络的图像分割的MindStudio实践
摘要:本实践是基于Windows版MindStudio 5.0.RC3,远程连接ECS服务器使用,ECS是基于官方分享的CANN6.0.RC1_MindX_Vision3.0.RC3镜像创建的. 本文 ...
- Windows下使用vscode连接Linux服务器进行C++代码运行与调试
参考链接: vscode + SSH 配置 https://blog.csdn.net/irober/article/details/112724986 launch.json + tasks.jso ...