BZOJ3732 (Kruskal重构树)
Kruskal重构树上\(x\)和\(v\)的\(lca\)的权值即为它们最长路最小值
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); (a) <= (c); ++(a))
#define nR(a,b,c) for(register int a = (b); (a) >= (c); --(a))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) ((a) ^= (b) ^= (a) ^= (b))
#define ll long long
#define u32 unsigned int
#define u64 unsigned long long
#define ON_DEBUGG
#ifdef ON_DEBUGG
#define D_e_Line printf("\n----------\n")
#define D_e(x) cout << (#x) << " : " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt", "r", stdin)
#define FileSave() freopen("out.txt", "w", stdout)
#include <ctime>
#define TIME() fprintf(stderr, "\ntime: %.3fms\n", clock() * 1000.0 / CLOCKS_PER_SEC)
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#define FileSave() ;
#define TIME() ;
//char buf[1 << 21], *p1 = buf, *p2 = buf;
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
#endif
using namespace std;
struct ios{
template<typename ATP>inline ios& operator >> (ATP &x){
x = 0; int f = 1; char ch;
for(ch = getchar(); ch < '0' || ch > '9'; ch = getchar()) if(ch == '-') f = -1;
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ '0'), ch = getchar();
x *= f;
return *this;
}
}io;
template<typename ATP>inline ATP Max(ATP a, ATP b){
return a > b ? a : b;
}
template<typename ATP>inline ATP Min(ATP a, ATP b){
return a < b ? a : b;
}
template<typename ATP>inline ATP Abs(ATP a){
return a < 0 ? -a : a;
}
const int N = 30007;
struct Edge{
int nxt, pre;
}e[N << 2];
int head[N], cntEdge;
inline void add(int u, int v){
e[++cntEdge] = (Edge){ head[u], v}, head[u] = cntEdge;
}
struct node{
int x, y, w;
bool operator < (const node &com) const{
return w < com.w;
}
}a[N << 1];
int n, m;
int val[N];
namespace KRUS{
int fa[N];
inline int Find(int x){
return x == fa[x] ? x : fa[x] = Find(fa[x]);
}
inline void Kruskal(){
sort(a + 1, a + m + 1);
int tot = n + 1, lim = n << 1;
R(i,1,lim) fa[i] = i;//, siz[i] = 1;
R(i,1,m){
int p = Find(a[i].x), q = Find(a[i].y);
if(p != q){
fa[p] = fa[q] = tot;
val[tot] = a[i].w;
add(tot, p), add(tot, q);
// add(p, tot), add(q, tot);
if(++tot >= lim) break;
}
}
}
}
namespace TCP{
int fa[N], top[N], son[N], siz[N], dep[N];
inline void DFS_First(int u, int father){
fa[u] = father, siz[u] = 1, dep[u] = dep[father] + 1;
for(register int i = head[u]; i;i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
DFS_First(v, u);
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
}
inline void DFS_Second(int u, int TP){
top[u] = TP;
if(!son[u]) return;
DFS_Second(son[u], TP);
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v != fa[u] && v != son[u])
DFS_Second(v, v);
}
}
inline int LCA(int x, int y){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) Swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
}
int main(){
freopen("3732Network.in", "r", stdin);
freopen("3732Network.out", "w", stdout);
int Q;
io >> n >> m >> Q;
R(i,1,m){
io >> a[i].x >> a[i].y >> a[i].w;
}
KRUS::Kruskal();
int root = (n << 1) - 1; // root is 2 * n - 1
TCP::DFS_First(root, 0);
TCP::DFS_Second(root, root);
while(Q--){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
printf("%d\n", val[TCP::LCA(u, v)]);
}
return 0;
}
BZOJ3732 (Kruskal重构树)的更多相关文章
- Kruskal重构树学习笔记+BZOJ3732 Network
今天学了Kruskal重构树,似乎很有意思的样子~ 先看题面: BZOJ 题目大意:$n$ 个点 $m$ 条无向边的图,$k$ 个询问,每次询问从 $u$ 到 $v$ 的所有路径中,最长的边的最小值. ...
- BZOJ3732: Network(Kruskal重构树)
题意 Link 给出一张$n$个点的无向图,每次询问两点之间边权最大值最小的路径 $n \leqslant 15000, m \leqslant 30000, k \leqslant 20000$ S ...
- BZOJ3732 Network(Kruskal重构树)
Kruskal重构树的模板题. 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N.图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: ...
- kruskal重构树
kruskal重构树 kruskal重构树,顾名思义,是在kruskal的时候顺便搞出来的一棵重构树,具体地说是一个堆. 先说说这个东西是怎么搞出来的吧:默认事先把边按边权从小到大排序,在kruska ...
- [算法模板]Kruskal重构树
[算法模板]Kruskal重构树 kruskal重构树是一个很常用的图论算法.主要用于解决u->v所有路径上最长边的最小值,就是找到\(u->v\)的一条路径,使路径上的最长边最小. 图片 ...
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- bzoj 3551 kruskal重构树dfs序上的主席树
强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...
随机推荐
- 一个 curl 配置引发的惨案
问题 这两天想装新版本的 node,发现 nvm 一直报下面这个错误.我反复 Google 了,但是并没有找到一条我能用的. 痛苦 我起初一直怀疑是我用的 zsh-nvm 抽疯,所以今天有空就把它还有 ...
- layui 数据表格 数据更新完成后数据刷新
模拟点击分页确定刷新数据 $(".layui-laypage-btn")[0].click()
- python亲密数设计
'''亲密数 (如果a的所有正因子和等于b,b的所有正因子和等于a,因子包括1但不包括本身,且a不等于b,则称a,b为亲密数对.一般通过叠代编程求出相应的亲密数对)'''n = 3000def fun ...
- BUUCTF-刷新过的图片
刷新过的图片 刷新在MISC中比较特殊,一般是指F5隐写方式 直接使用工具提取出来,发现生成的是Pk开头的,应该是zip格式 使用16进制确认了是ZIP,将生成的output.txt改为output. ...
- BUUCTF-webshell后门
webshell后门 老方法,D盾直接查杀. flag{ba8e6c6f35a53933b871480bb9a9545c}
- 高级web网页人脸识别tracking.js
what?你没有看错,强大的JavaScript也可以实现人脸识别功能.小编精心整理了一个人脸识别的JavaScript库(tracking.js),通过这篇文章,你可以了解到如何在网页中实现一个人脸 ...
- SAP 动态选择屏幕实例
DATA:BEGIN OF gs_sel, werks TYPE marc-werks, "工厂 matnr TYPE mara-matnr, "物料 mtart TYPE mar ...
- RPA SAP财务内部对账机器人
[简介] 本机器人用于使用SAP软件的集团公司间往来对账前台登录SAP账户和密码,需退出PC微信,输入法切换为英文半角状态. [详细流程] 1.清空Excel-VBA管理工具原始数据 2.输入对账时间 ...
- RPA应用场景-考勤审批
场景概述 考勤审批 所涉系统名称 考勤系统,微信 人工操作(时间/次) 5分钟 所涉人工数量 43 操作频率 不定时 场景流程 1.客户领导长期出差,又不想对考勤系统做深度开发: 2.员工请假后,领导 ...
- C++简单工厂模式的学习
我们先从最常见的C++类的一个实现开始说起, class API { public: virtual test(std::string s)=0; protected: API(){}; }; cla ...