任意N阶幻方算法实现
算法原理请参考:https://www.zhihu.com/question/23531676
先定义一些通用的函数,比如创建空幻方,删除幻方,打印幻方。
创建幻方
int **NewMagicS(int n) {
int **magic = new int*[n];
for (int k = 0; k < n; k++)
magic[k] = new int[n];
return magic;
}
删除幻方
void DeleteMagicS(int **magic, int n) {
for (int k = 0; k < n; k++)
delete[] magic[k];
delete[] magic;
}
打印幻方
void ShowMagicS(int **magic, int n) {
int i, j;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
printf("%-6d", magic[i][j]);
printf("\n");
}
}
一、奇数幻方算法实现:
辅助函数(实现算法)
void OddMagicSA(int **magic, int n, int value) {
int i, j, total;
//初始化二维数组
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
magic[i][j] = 0;
i = 0;
j = n / 2;
magic[i][j] = value++;
for (total = 1; total < n*n; total++, value++) {//向右上角移动
//调整位置
if (!magic[(i - 1) == -1 ? n - 1 - i : i - 1][(j + 1) % n]) { //空闲
i = (i - 1) == -1 ? n - 1 - i : i - 1;
j = (j + 1) % n;
}
else //原位置下移一格(行变)
i = (i + 1) % n;
magic[i][j] = value;
}
}
主函数(负责打印)
void OddMagicS(int n) {
int **magic;
if (n <= 0 || n == 1 || n == 2 || (n % 2 == 0)) return;
magic = NewMagicS(n);
OddMagicSA(magic, n, 1);
//显示奇数幻方
ShowMagicS(magic, n);
DeleteMagicS(magic, n);
}
二、偶数幻方算法实现:
辅助函数(算法实现)
void EvenMagicSA(int **magic, int n, int value) {
int i, j;
//初始化二维数组
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
magic[i][j] = 0;
//分割为4x4格子,然后填充对角线位置为-1
for (i = 0; i < n; i += 4)//i, j 表示4x4起点
for (j = 0; j < n; j += 4) {
//对角线填充
for (int k = 0; k < 4; k++) {
magic[i + k][j + k] = -1;
magic[i + 3 - k][j + k] = -1;
}
}
i = 0;
for (; i < n; i++)
for (j = 0; j < n; j++, value++) {
//先填充4x4非对角线,从左向右,从上向下
if (magic[i][j] != -1 && magic[i][j] == 0) magic[i][j] = value;
//填充4x4对角线,左右向左,从下向上
if (magic[n - 1 - i][n - 1 - j] == -1) magic[n - 1 - i][n - 1 - j] = value;
}
}
主要函数(打印幻方)
void EvenMagicS(int n) {
int **magic;
if (n <= 0 || n == 1 || n == 2 || n % 4 != 0) return;
magic = NewMagicS(n);
EvenMagicSA(magic, n, 1);
//显示偶数幻方
ShowMagicS(magic, n);
DeleteMagicS(magic, n);
}
三、最后一个幻方类型叫做奇偶幻方,算法实现:
增加一个幻方复制
void CopyMagicS(int **dstMagic, int sLine, int sColumn, int **srcMagic, int n) {
for (int i = sLine, p = 0; p < n; i++, p++)
for (int j = sColumn, q = 0; q < n; j++, q++)
dstMagic[i][j] = srcMagic[p][q];
}
主要函数(算法实现)
void OddEvenMagicS(int n) {
int **magic, **magicTemp, i, j, k, mid;
if (!(n >= 0 && n != 1 && n != 2 && (n % 2 == 0 && n % 4 != 0))) return;
magic = NewMagicS(n);
magicTemp = NewMagicS(n / 2);
//顺时针分成A,B,C,D四个象限,并且按照A, D, B, C的顺序以奇幻方方法填充
i = j = 0;//A象限
OddMagicSA(magicTemp, n / 2, 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
i = j = n / 2;//D象限
OddMagicSA(magicTemp, n / 2, n / 2 * n / 2 + 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
i = 0;
j = n / 2;//B象限
OddMagicSA(magicTemp, n / 2, n / 2 * n / 2 * 2 + 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
i = n / 2;
j = 0;//C象限
OddMagicSA(magicTemp, n / 2, n / 2 * n / 2 * 3 + 1);
CopyMagicS(magic, i, j, magicTemp, n / 2);
k = (n - 2) / 4;
//A, C象限交换
for (int l = 0; l < n / 2; l++)
for (int m = 0; m < k; m++)
if (l == n / 4) {//中间行
mid = magic[l][k + m];
magic[l][k + m] = magic[n / 2 + l][k + m];
magic[n / 2 + l][k + m] = mid;
}
else {
mid = magic[l][m];
magic[l][m] = magic[n / 2 + l][m];
magic[n / 2 + l][m] = mid;
}
//B, D象限交换
for (int l = 0; l < k - 1; l++) {//列
for (int m = 0; m < n / 2; m++) {//行
mid = magic[m][3 * n / 4 - l];
magic[m][3 * n / 4 - l] = magic[n / 2 + m][3 * n / 4 - l];
magic[n / 2 + m][3 * n / 4 - l] = mid;
}
}
//显示奇偶数幻方
ShowMagicS(magic, n);
DeleteMagicS(magic, n);
DeleteMagicS(magicTemp, n / 2);
}
所有代码均经过测试,结果正确。
任意N阶幻方算法实现的更多相关文章
- Java 实现任意N阶幻方的构造
一.关于单偶数阶幻方和双偶数阶幻方 (一)单偶数阶幻方(即当n=4k+2时) 任何4k+2 阶幻方都可由2k+1阶幻方与2×2方块复合而成,6是此类型的最小阶. 以6阶为例,可由3阶幻方与由0,1,2 ...
- 任意阶幻方(魔方矩阵)C语言实现
魔方又称幻方.纵横图.九宫图,最早记录于我国古代的洛书.据说夏禹治水时,河南洛阳附近的大河里浮出了一只乌龟,背上有一个很奇怪的图形,古人认为是一种祥瑞,预示着洪水将被夏禹王彻底制服.后人称之为&quo ...
- Java 实现奇数阶幻方的构造
一.设计的流程图如下所示 二.Java 语言的代码实现 package MagicSquare; //奇数幻方的实现 public class Magic_Odd { //n 为幻方的阶数 publi ...
- n阶幻方
前序 最近在学习一些经典的算法,搞得头昏脑涨,就想换换脑子.在家里的旧书堆里面乱翻,无意中将一本具有十多年历史的小学数学奥林匹克竞赛的书发掘了出来,能放到现在挺不容易的,就拿起来随便翻翻.看了看目录, ...
- n阶幻方问题
转载自:http://blog.csdn.net/fengchaokobe/article/details/7437767 目录 第一节 n阶幻方问题 第二节 由n阶幻方引发 ...
- 【C】——幻方算法
一.幻方按照阶数可分成了三类,即奇数阶幻方.双偶阶幻方.单偶阶幻方. 二.奇数阶幻方(劳伯法) 奇数阶幻方最经典的填法是罗伯法.填写的方法是: 把1(或最小的数)放在第一行正中:按以下规律排列剩下的( ...
- hdu1998 bjfu1272奇数阶幻方构造
这题就是一个sb题,本来很水,硬是说得很含混.奇数阶幻方构造其实有好多方法,这题既不special judge,也不说清楚,以为这样能把水题变成难题似的,简直想骂出题人. /* * Author : ...
- Codeforces 710C. Magic Odd Square n阶幻方
C. Magic Odd Square time limit per test:1 second memory limit per test:256 megabytes input:standard ...
- codeforces 710C Magic Odd Square(构造或者n阶幻方)
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both ma ...
随机推荐
- FileAPI
FileAPI ```java File类的常见方法 1.创建. boolean createNewFile(); //创建文件 boolean mkdir();创建文件夹 boolean mkdir ...
- jenkins 自动化部署vue前端+java后端项目 进阶一
今天又不想写了,那么我来将我参考的文章直接分享给大家好了,大家也可以直接进行参考: 这里以centos7为例搭建自动化部署项目: 1.搭建部署前端服务代理nginx: 借鉴于:https://blog ...
- 使用Redis实现购物车功能
增加购物车商品 假设ID为1001的向购物车中存放了3个商品,产品ID分别为10021.10025.10079 hset cart:1001 10021 1 hset cart:1001 10025 ...
- 【NOIP2017 提高组正式赛】列队 题解
题目大意 有一个 \(n\times m\) 的方阵,每次有 \((x,y)\) 离开,离开后有两个命令 向左看齐.这时第一列保持不动,所有学生向左填补空缺.这条指令之后,空位在第 \(x\) 行第 ...
- Ribbon的ServerStats引起内存泄露问题总结
问题描述 服务运行一段时间之后,出现页面卡顿加载慢的问题,使用top命令查看了服务器的使用情况,发现CPU飙高,接着查看了该进程中每个线程的占用情况,发现导致CPU高的线程是JVM垃圾回收的线程,然后 ...
- 记录人生中的第一个bug
对象的引用 使用**只是拷贝了字典的最外层,加个deepcopy可以实现深拷贝,递归的去复制对象 bug来源: 在一次将数据库里的数据转成json格式过程中,在遍历数据库对象时,对象的引用不当,导致最 ...
- 第二章、DHCP原理与配置
目录 一.了解DHCP服务 1DHCP概述: 2DHCP好处 3DHCP的分配方式 二.DHCP工作过程 DHCP租约过程 三.使用 DHCP动态配置主机地址 1DHCP服务优点 2可分配的地址信息主 ...
- Java开发学习(六)----DI依赖注入之setter及构造器注入解析
一.DI依赖注入 首先来介绍下Spring中有哪些注入方式? 我们先来思考 向一个类中传递数据的方式有几种? 普通方法(set方法) 构造方法 依赖注入描述了在容器中建立bean与bean之间的依赖关 ...
- 【python基础】第03回 软件安装
上节内容回顾 1.计算机五大组成部分详解 1.控制器 控制计算机各个硬件的工作 2.运算器 数学运算.逻辑运算(核心) """CPU = 控制器 + 运算器"& ...
- java常见的面试题(一)
1.Collection 和 Collections 有什么区别? Collection 是一个集合接口(集合类的一个顶级接口).它提供了对集合对象进行基本操作的通用接口方法.Collection接口 ...