今天给大家带来的这篇文章是关于机器学习的,机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化;我们使用线性代数来处理计算过程;我们还用概率论与统计学建模不确定性。

在这其中,概率论有其独特的地位,模型的预测结果、学习过程、学习目标都可以通过概率的角度来理解。

与此同时,从更细的角度来说,随机变量的概率分布也是我们必须理解的内容。在这篇文章中,项目作者介绍了所有你需要了解的统计分布,他还提供了每一种分布的实现代码。

学习资料!(https://jq.qq.com/?_wv=1027&k=zLK3I0M5)


项目地址:https://github.com/graykode/dis

下面让我们先看看总体上概率分布都有什么吧:

非常有意思的是,上图每一种分布都是有联系的。比如说伯努利分布,它重复几次就是二项分布,如果再扩展到多类别,就成为 了多项式分布。注意,其中共轭(conjugate)表示的是互为共轭的概率分布;Multi-Class 表示随机变量多于 2 个;N Times 表示 我们还会考虑先验分布 P(X)。

在贝叶斯概念理论中,如果后验分布 p(θ | x) 与先验分布 p(θ) 是相同的概率分布族,那么后验分布可以称为共轭分布,先验分布

可以称为似然函数的共轭先验。

为了学习概率分布,项目作者建议我们查看 Bishop 的模式识别与机器学习。当然,你要是准备再过一遍《概率论与数理统计》,

那也是极好的。

概率分布与特性

  1. 均匀分布(连续型)

均匀分布是指闭区间 [a, b] 内的随机变量,且每一个变量出现的概率是相同的。


2. 伯努利分布(离散型)

伯努利分布并不考虑先验概率 P(X),它是单个二值随机变量的分布。它由单个参数φ∈ [0, 1] 控制,φ 给出了随机变量等于 1 的

概率。我们使用二元交叉熵函数实现二元分类,它的形式与对伯努利分布取负对数是一致的。

3. 二项分布(离散型)

二项分布是由伯努利提出的概念,指的是重复 n 次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与

否互相对立。

4.Multi-Bernoulli 分布(离散型)

Multi-Bernoulli 分布又称为范畴分布(Categorical distribution),它的类别超过 2,交叉熵的形式与该分布的负对数形式是一致的。

5. 多项式分布(离散型)

范畴分布是多项式分布(Multinomial distribution)的一个特例,它与范畴分布的关系就像伯努利分布与二项分布之间的关系。

6.Beta 分布(连续型)

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,它指一组定义在 (0,1) 区间的连续

概率分布。均匀分布是 Beta 分布的一个特例,即在 alpha=1、 beta=1 的分布。

7. 狄利克雷分布(连续型)

狄利克雷分布(Dirichlet distribution)是一类在实数域以正单纯形(standard simplex)为支撑集(support)的高维连续概率分布,是 Beta 分布在高维情形的推广。在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。

8.Gamma 分布(连续型)

Gamma 分布是统计学中的常见连续型分布,指数分布、卡方分布和 Erlang 分布都是它的特例。如果 Gamma(a,1) / Gamma(a,1)

Gamma(b,1),那么 Gamma 分布就等价于 Beta(a, b) 分布。

  1. 指数分布(连续型)

指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔等等。当alpha 等于 1 时,指数分布就是 Gamma 分布的特例。

10. 高斯分布(连续型)

高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。

当正态分布的均值为 0、方差为 1 的时候,它就是标准正态分布,这也是我们最常用的分布。

  1. 卡方分布(连续型)

简单而言,卡方分布(Chi-squared)可以理解为,k 个独立的标准正态分布变量的平方和服从自由度为 k 的卡方分布。卡方分布是一种特殊的伽玛分布,是统计推断中应用最为广泛的概率分布之一,例如假设检验和置信区间的计算。



12. 学生 t-分布

学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。t 分布也是对称的倒钟型分布,就如同正态分布一样,但它的长尾占比更多,这意味着 t 分布更容易产生远离均值的样本。


分布的代码实现

上面多种分布的 NumPy 构建方式以及制图方式都提供了对应的代码,读者可在原项目中查阅。如下所示展示了指数分布的构建
的制图方式,我们可以直接定义概率密度函数,再打印出来就好了。

import numpy as np from matplotlib import pyplot as plt  def exponential(x, lamb):     y = lamb * np.exp(-lamb * x) return x, y, np.mean(y), np.std(y) for lamb in [0.5, 1, 1.5]:      x = np.arange(0, 20, 0.01, dtype=np.float)     x, y, u, s = exponential(x, lamb=lamb)     plt.plot(x, y, label=r'$mu=%.2f, sigma=%.2f,' r' lambda=%d$' % (u, s, lamb)) plt.legend() plt.savefig('graph/exponential.png') plt.show()

最后

今天给大家分享的Python小技巧到这里就结束了,对于文章有不懂的地方可以评论留言告诉我,喜欢的记得点赞收藏哟!!!

Python实现12种概率分布(附代码)的更多相关文章

  1. 用Python实现BP神经网络(附代码)

    用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络. BP神经网络 全部代码 https://github.com/lawl ...

  2. 小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码)

    小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码) Python 被称为是最接近 AI 的语言.最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用P ...

  3. python德国信用评分卡建模(附代码AAA推荐)

    欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 python信用评分卡建模视频系列教程(附代码)  博主录制 https://study.163.com/course/i ...

  4. Python 爬虫的工具列表 附Github代码下载链接

    Python爬虫视频教程零基础小白到scrapy爬虫高手-轻松入门 https://item.taobao.com/item.htm?spm=a1z38n.10677092.0.0.482434a6E ...

  5. 数据科学中的常见的6种概率分布(Python实现)

    作者:Pier Paolo Ippolito@南安普敦大学 编译:机器学习算法与Python实战(微信公众号:tjxj666) 原文:https://towardsdatascience.com/pr ...

  6. 分享5种风格的 jQuery 分页效果【附代码】

    jPaginate 是一款非常精致的分页插件,提供了五种不同风格的分页效果,支持鼠标悬停翻页,快速分页功能.这款插件还提供了丰富的配置选项,你可以根据需要进行设置. 效果演示      源码下载 各个 ...

  7. Python进阶:函数式编程实例(附代码)

    Python进阶:函数式编程实例(附代码) 上篇文章"几个小例子告诉你, 一行Python代码能干哪些事 -- 知乎专栏"中用到了一些列表解析.生成器.map.filter.lam ...

  8. 【转载】Python编程中常用的12种基础知识总结

    Python编程中常用的12种基础知识总结:正则表达式替换,遍历目录方法,列表按列排序.去重,字典排序,字典.列表.字符串互转,时间对象操作,命令行参数解析(getopt),print 格式化输出,进 ...

  9. Python编程中常用的12种基础知识总结

    原地址:http://blog.jobbole.com/48541/ Python编程中常用的12种基础知识总结:正则表达式替换,遍历目录方法,列表按列排序.去重,字典排序,字典.列表.字符串互转,时 ...

随机推荐

  1. hutool工具类常用API整理

    0.官网学习地址 https://www.hutool.cn/ 1.依赖 <dependency> <groupId>cn.hutool</groupId> < ...

  2. 生成二维码,并且保存,指定位置的view成图片,并且保存到本地相册

    效果图: 保存的图片效果是: 保存到本地的,是整个视图,不只是单单的二维码的图片, 在了解的一番过程之后,我知道了, 1.首先要去获取保存图片的写入权限:(使用 https://github.com/ ...

  3. 【Java分享客栈】从线上环境摘取了四个代码优化记录分享给大家

    前言 因为前段时间新项目已经完成目前趋于稳定,所以最近我被分配到了公司的运维组,负责维护另外一个项目,包含处理客户反馈的日常问题,以及对系统缺陷进行优化. 经过了接近两周的维护,除了日常问题以外,代码 ...

  4. Java 18 新特性:简单Web服务器 jwebserver

    在今年3月下旬的时候,Java版本已经更新到了18.接下来DD计划持续做一个系列,主要更新从Java 9开始的各种更新内容,但我不全部都介绍,主要挑一些有意思的内容,以文章和视频的方式来给大家介绍和学 ...

  5. 记录Neo4j上写的简单cypher语法

    neo4j是一个高性能的图形数据库,既然是数据库,那么主要操作就是增.删.改.查.所以进入正题: 一.CREATE:创建 语法如下: 1.create(变量名:标签名) :建立一个标签为Animal的 ...

  6. 《手把手教你》系列基础篇(九十五)-java+ selenium自动化测试-框架之设计篇-java实现自定义日志输出(详解教程)

    1.简介 前面宏哥一连几篇介绍如何通过开源jar包Log4j.jar.log4j2.jar和logback实现日志文件输出,Log4j和logback确实很强大,能生成三种日志文件,一种是保存到磁盘的 ...

  7. 【导包】使用Sklearn构建Logistic回归分类器

    官方英文文档地址:http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html# ...

  8. 【Azure Developer】使用 adal4j(Azure Active Directory authentication library for Java)如何来获取Token呢

    问题描述 使用中国区的Azure,在获取Token时候,参考了 adal4j的代码,在官方文档中,发现了如下的片段代码: ExecutorService service = Executors.new ...

  9. Linux-3作业练习

    1.自建yum仓库,分别为网络源和本地源 请移步: yum源配置 2.编译安装http2.4,实现可以正常访问,并将编译步骤和结果提交. 请移步:http2.4编译安装       总结参照https ...

  10. 批量安装Windows系统

    今天我们利用Windows server 2019自带的Windows部署服务通过网络批量安装Win 10 一.Windows服务 1)WDS WDS(Windows Deployment Servi ...