题意:给你一堆字符串,仅包含数字'0'到'9'。

例如 101 123

有一个字符串集合S包含输入的N个字符串,和他们的全部字串。

操作字符串很无聊,你决定把它们转化成数字。

你可以把一个字符串转换成一个十进制整数。

如果一个数字出现了多次,只留一个。

计算所有数字的和,模2012。

1<=N<=10000

题解:参考 http://blog.csdn.net/kqzxcmh/article/details/8122747

每个后缀的所有前缀就是所有子串。sa[i]和sa[i-1]有height[i]的长度是重复的,可以不考虑。

把字符串连起来,中间加分隔符,构成一个大的字符串,然后整体求后缀数组。

对于一个字符串123
可以v[0]=1 v[1]=12 v[3]=123  v[i]是0-i构成的数字
sum是前缀和 sum[0]=1 sum[1]=13 sum[2]=136

对于后缀23 sum[2]-sum[0] 得到 12+123的和

对于12需要减去10 对于123需要减去100

所以求l~r 首先需要sum[r]-sum[l-1], 然后设x=r-l

需要减去 for(int i=1;i<=x;++i) pow(10, i);

可以预处理出来。

太难辣!!像我这种辣鸡不适合这么难的题T^T

时限3s,187ms还是比较快的。

//后缀数组
#include <stdio.h>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int N = int(2e5)+;
const int M = ; int cmp(int *r,int a,int b,int l){
return (r[a]==r[b]) && (r[a+l]==r[b+l]);
}
// 用于比较第一关键字与第二关键字,
// 比较特殊的地方是,预处理的时候,r[n]=0(小于前面出现过的字符) int wa[N],wb[N],wss[N],wv[N];
int sa[N]; // 排第i的是谁 i:1~n sa:0~n-1
int rk[N], // i排第几 i:0~n-1 rk:1~n
height[N]; // 排名相邻的两个后缀的最长公共前缀长度:suffix(sa[i-1])和(sa[i]) 的最长公共前缀,
char str[N]; void DA(char *r,int *sa,int n,int m){ // 此处N比输入的N要多1,为人工添加的一个字符,用于避免CMP时越界 m是不同的字符的个数
int i,j,p,*x=wa,*y=wb,*t;
for(i=;i<m;i++) wss[i]=;
for(i=;i<n;i++) wss[x[i]=r[i]]++;
for(i=;i<m;i++) wss[i]+=wss[i-];
for(i=n-;i>=;i--) sa[--wss[x[i]]]=i;
for(j=,p=;p<n;j*=,m=p)
{
for(p=,i=n-j;i<n;i++) y[p++]=i;
for(i=;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=;i<n;i++) wv[i]=x[y[i]];
for(i=;i<m;i++) wss[i]=;
for(i=;i<n;i++) wss[wv[i]]++;
for(i=;i<m;i++) wss[i]+=wss[i-];
for(i=n-;i>=;i--) sa[--wss[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=,x[sa[]]=,i=;i<n;i++)
x[sa[i]]=cmp(y,sa[i-],sa[i],j)?p-:p++;
}
} void calheight(char *r,int *sa,int n){ // 此处N为实际长度
int i,j,k=;
for(i=;i<=n;i++) rk[sa[i]]=i;
for(i=;i<n; height[rk[i++]] = k )
for(k?k--:,j=sa[rk[i]-]; r[i+k]==r[j+k]; k++);
} char word[N];
int d[N]; // 该字符串的结束位置
int sum[N];
int v[N];
int Pow[N]; int cal(int l, int r) {
if (l > r) return ;
//printf(">>%d %d %d %d %d\n", l, r, sum[r+1], sum[l], v[l]);
//printf("%d\n", ((sum[r+1]-sum[l]) - v[l]*Pow[r-l+1]%M + M) % M);
return ((sum[r+]-sum[l]) - v[l]*Pow[r-l+]%M + M) % M;
} int main(int argc, char const *argv[])
{
//freopen("in.txt", "r", stdin);
Pow[]=;Pow[]=;
for (int i=;i<N;++i)
Pow[i]=(Pow[i-]+)*%M;
int n;
while (~scanf("%d", &n)) {
int idx = ;
for (int i = ; i < n; ++i) {
scanf("%s", word);
int len = strlen(word);
int val = ;
for (int j = ; j < len; ++j) {
str[idx] = word[j] - '' + ;
val = (val * + str[idx] - ) % M;
v[idx+] = val; //+1是因为会有-1 <0很麻烦= =
sum[idx+] = (sum[idx] + val) % M;
d[idx] = len - j + idx;
idx++;
}
d[idx] = idx;
sum[idx+] = v[idx+] = ;
str[idx++] = ; //1~11
}
str[idx] = ;
DA(str, sa, idx+, );
calheight(str, sa, idx);
int ans = ;
for (int i = ; i < idx; ++i) {
if (str[i] == || str[i] == ) continue; // 不要前导零
int l = i + height[rk[i]];//重复的部分
int r = d[i]-;
//printf("i=%d,l=%d, r=%d\n", i, l, r);
if (l > r) continue;
ans = (ans + cal(i, r) - cal(i, l-)) % M;
//ans = (ans + cal(l, r)) % M; 这个不对 因为所求字符串是从i开始的
ans = (ans + M) % M;
}
printf("%d\n", ans);
}
return ;
}

后缀自动机= = 先留坑吧orz。。。。

hdu4436-str2int(后缀数组 or 后缀自动机)的更多相关文章

  1. [TJOI2015]弦论(后缀数组or后缀自动机)

    解法一:后缀数组 听说后缀数组解第k小本质不同的子串是一个经典问题. 把后缀排好序后第i个串的本质不同的串的贡献就是\(n-sa[i]+1-LCP(i,i-1)\)然后我们累加这个贡献,看到哪一个串的 ...

  2. (持续更新)虚树,KD-Tree,长链剖分,后缀数组,后缀自动机

    真的就是讲课两天,吸收一个月呢! \(1.\)虚树 \(2.\)KD-Tree \(3.\)长链剖分 \(4.\)后缀数组 后缀数组 \(5.\)后缀自动机 后缀自动机

  3. 字符串数据结构模板/题单(后缀数组,后缀自动机,LCP,后缀平衡树,回文自动机)

    模板 后缀数组 #include<bits/stdc++.h> #define R register int using namespace std; const int N=1e6+9; ...

  4. poj 2774 最长公共子--弦hash或后缀数组或后缀自己主动机

    http://poj.org/problem?id=2774 我想看看这里的后缀数组:http://blog.csdn.net/u011026968/article/details/22801015 ...

  5. poj2774 Long Long Message(后缀数组or后缀自动机)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Long Long Message Time Limit: 4000MS   Me ...

  6. 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组

    涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...

  7. bzoj 3172 后缀数组|AC自动机

    后缀数组或者AC自动机都可以,模板题. /************************************************************** Problem: 3172 Us ...

  8. SPOJ694 DISUBSTR --- 后缀数组 / 后缀自动机

    SPOJ694 DISUBSTR 题目描述: Given a string, we need to find the total number of its distinct substrings. ...

  9. POJ3080 POJ3450Corporate Identity(广义后缀自动机||后缀数组||KMP)

    Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...

随机推荐

  1. 利用Spring AOP自定义注解解决日志和签名校验

    转载:http://www.cnblogs.com/shipengzhi/articles/2716004.html 一.需解决的问题 部分API有签名参数(signature),Passport首先 ...

  2. 【转】windows c++获取文件信息——_stat函数的使用

    _stat函数的功能 _stat函数用来获取指定路径的文件或者文件夹的信息. 函数声明 int _stat( const char *path, struct _stat *buffer ); 参数: ...

  3. ArcGIS学习记录—属性表的编辑与修改

    原文地址: ArcGIS问题:属性表的编辑与修改 - Silent Dawn的日志 - 网易博客 http://gisman.blog.163.com/blog/static/344933882009 ...

  4. R语言学习笔记:向量化

    R语言最强大的方面之一就是函数的向量化,这些函数可以直接对向量的每个元素进行操作.例如: 对每个元素进行开方 > v<-c(4,3,8,16,7.3) > v [1]  4.0  3 ...

  5. Ubuntu12.04下arm交叉编译环境的建立

    http://blog.csdn.net/heyangya2009/article/details/5424376 备注:ubuntu12.04+Android+Real6410 在主机上用来编译其他 ...

  6. linux 查看系统信息命令

    linux 查看系统信息命令是linux初学者必备的基础知识, 这些命令也非常有用, 因为进入linux第一件事就可能是首先查看系统信息, 因此必要的系统的学习一下这些linux系统信息命令还是非常有 ...

  7. mysql运算符的优先级

    Operator precedences are shown in the following list, from highest precedence to the lowest. Operato ...

  8. UVa 1151 (枚举 + MST) Buy or Build

    题意: 平面上有n个点,现在要把它们全部连通起来.现在有q个套餐,如果购买了第i个套餐,则这个套餐中的点全部连通起来.也可以自己单独地建一条边,费用为两点欧几里得距离的平方.求使所有点连通的最小费用. ...

  9. SCOI2007蜥蜴

    Description 在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱 上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃到边界外. 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到 ...

  10. windows官方多语言方案

    编写 Win32 多语言用户界面应用程序 Windows 2000 针对全球市场制定了新的增强支持标准,提供了许多国际化功能,例如完全支持 Unicode.预设支持数百种语言以及用于从右向左语言的镜像 ...