Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.

Example:

Given nums = [1, 3, 5]

sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8

Note:

  1. The array is only modifiable by the update function.
  2. You may assume the number of calls to update and sumRange function is distributed evenly
public class NumArray {
private SegmentTreeNode root = null;
private int size = 0; public NumArray(int[] nums) {
root = buildInSegmentTree(nums, 0, nums.length - 1);
size = nums.length;
} void update(int i, int val) {
if(i<0 || i>=size) return;
updateInSegmentTree(root, i, val);
} public int sumRange(int i, int j) {
if(i>j || i<0 || j>=size) return -1;
return querySum(root, i, j);
} class SegmentTreeNode{
int lc = 0, rc = 0, sum = 0;
SegmentTreeNode left = null, right = null;
SegmentTreeNode(int l, int r, int val) {
lc = l; rc = r; sum = val;
}
} public SegmentTreeNode buildInSegmentTree(int []nums, int l, int r) {
if(l > r) return null; if(l == r) {
SegmentTreeNode leaf = new SegmentTreeNode(l, r, nums[l]);
return leaf;
} SegmentTreeNode root = new SegmentTreeNode(l, r, 0);
int mid = (l + r) >> 1;
root.left = buildInSegmentTree(nums, l, mid);
root.right = buildInSegmentTree(nums, mid+1, r);
root.sum = root.left.sum + root.right.sum; return root;
} public void updateInSegmentTree(SegmentTreeNode root, int i, int val) {
if(root.lc == root.rc && root.lc == i) {
root.sum = val;
return;
} int mid = (root.lc + root.rc) >> 1;
if(i >= root.lc && i <= mid) updateInSegmentTree(root.left, i, val);
else updateInSegmentTree(root.right, i, val);
root.sum = root.left.sum + root.right.sum;
} public int querySum(SegmentTreeNode root, int i, int j) {
if(root.lc == i && root.rc == j) return root.sum; int mid = (root.lc + root.rc) >> 1;
if(i <= mid && j <= mid) return querySum(root.left, i, j);
else if(i > mid && j > mid) return querySum(root.right, i, j);
else return querySum(root.left, i, mid) + querySum(root.right, mid+1, j);
}
} // Your NumArray object will be instantiated and called as such:
// NumArray numArray = new NumArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);

下面附上java版segmentTree模板代码(共有两个文件:一个是SegmentTreeNode.java,另一个是SegmentTree.java。)

package cc150;

public class SegmentTreeNode {
public int lc, rc, sum, add;
SegmentTreeNode left, right; public SegmentTreeNode() {
this.lc = 0; this.rc = 0; this.sum = 0; this.add = 0;
this.left = null; this.right = null;
} public SegmentTreeNode(int l, int r, int val) {
this.lc = l; this.rc = r; this.sum = val; this.add = 0;
this.left = null; this.right = null;
} public static void main(String[] args) {
// TODO Auto-generated method stub } }

SegmentTreeNode.java

package cc150;

public class SegmentTree {
public SegmentTreeNode root = null;
int lower_bound, upper_bound; public SegmentTree() {
this.root = null;
this.lower_bound = 0; this.upper_bound = 0;
} public SegmentTree(int l, int r, int []nums) {
//@ SegmentTreeNode(left_idx, right_idx, sum).
this.root = new SegmentTreeNode(l, r, 0);
this.lower_bound = l; this.upper_bound = r;
buildSegmentTree(l, r, nums, root);
} public void buildSegmentTree(int l, int r, int []nums, SegmentTreeNode s) {
SegmentTreeNode sroot = s;
if(l > r) return; if(l == r) {
sroot.sum = nums[l];
return;
} int mid = (l + r) / 2;
sroot.left = new SegmentTreeNode(l, mid, 0);
buildSegmentTree(l, mid, nums, sroot.left); sroot.right = new SegmentTreeNode(mid+1, r, 0);
buildSegmentTree(mid+1, r, nums, sroot.right); sroot.sum = sroot.left.sum + sroot.right.sum; } public void updateByPoint(SegmentTreeNode sroot, int idx, int val) {
if(idx == sroot.lc && sroot.lc == sroot.rc) {
sroot.sum = val;
return;
} int mid = (sroot.lc + sroot.rc) / 2;
if(idx <= mid) updateByPoint(sroot.left, idx, val);
else updateByPoint(sroot.right, idx, val); sroot.sum = sroot.left.sum + sroot.right.sum;
} public void updateBySegment(SegmentTreeNode sroot, int l, int r, int val) {
if(l == sroot.lc && r == sroot.rc) {
sroot.add += val;
sroot.sum += val * (r - l + 1);
return;
} if(sroot.lc == sroot.rc) return;
int len = sroot.rc - sroot.lc + 1;
if(sroot.add > 0) {
sroot.left.add += sroot.add;
sroot.right.add += sroot.add;
sroot.left.sum += sroot.add * (len - (len/2));
sroot.right.sum += sroot.add * (len/2);
sroot.add = 0;
} int mid = sroot.lc + (sroot.rc - sroot.lc)/2;
if(r <= mid) updateBySegment(sroot.left, l, r, val);
else if(l > mid) updateBySegment(sroot.right, l, r, val);
else {
updateBySegment(sroot.left, l, mid, val);
updateBySegment(sroot.right, mid+1, r, val);
} sroot.sum = sroot.left.sum + sroot.right.sum;
} static int querySum(SegmentTreeNode sroot, int i, int j) {
if(i > j) {
System.out.println("Invalid Query!");
return -1;
}
if(i<sroot.lc || j>sroot.rc) return querySum(sroot, sroot.lc, sroot.rc); if(sroot.lc == i && sroot.rc == j) return sroot.sum;/*
int len = sroot.rc - sroot.lc + 1;
if(sroot.add > 0) {
sroot.left.add += sroot.add;
sroot.right.add += sroot.add;
sroot.left.sum += sroot.add * (len - len/2);
sroot.right.sum += sroot.add * (len/2);
sroot.add = 0;
}
*/
int mid = (sroot.lc + sroot.rc) / 2; if(j <= mid) return querySum(sroot.left, i, j);
else if(i > mid) return querySum(sroot.right, i, j);
else return querySum(sroot.left, i, mid) + querySum(sroot.right, mid+1, j);
} public static void main(String[] args) {
// TODO Auto-generated method stub
int []nums = new int[10];
for(int i=0;i<nums.length;++i) nums[i] = i; SegmentTree st = new SegmentTree(0, nums.length-1, nums);
int tmp = querySum(st.root, 0, 9);
System.out.println(tmp); st.updateByPoint(st.root, 5, 7);
System.out.println(querySum(st.root, 0, 9)); st.updateBySegment(st.root, 3, 4, 2);
System.out.println(querySum(st.root, 2, 7));
} }

SegmentTree.java

leetcode@ [307] Range Sum Query - Mutable / 线段树模板的更多相关文章

  1. [LeetCode] 307. Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  2. [LeetCode] 307. Range Sum Query - Mutable 解题思路

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  3. LeetCode - 307. Range Sum Query - Mutable

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  4. leetcode 307. Range Sum Query - Mutable(树状数组)

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  5. Leetcode 2——Range Sum Query - Mutable(树状数组实现)

    Problem: Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), ...

  6. 【刷题-LeetCode】307. Range Sum Query - Mutable

    Range Sum Query - Mutable Given an integer array nums, find the sum of the elements between indices ...

  7. [Leetcode Week16]Range Sum Query - Mutable

    Range Sum Query - Mutable 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/range-sum-query-mutable/de ...

  8. 【leetcode】307. Range Sum Query - Mutable

    题目如下: 解题思路:就三个字-线段树.这个题目是线段树用法最经典的场景. 代码如下: class NumArray(object): def __init__(self, nums): " ...

  9. 307. Range Sum Query - Mutable

    题目: Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclu ...

随机推荐

  1. leetcode 练习1 two sum

    leetcode 练习1  two sum whowhoha@outlook.com 问题描述 Given an array of integers, return indices of the tw ...

  2. Head First 设计模式笔记:单例模式

    单例模式 确保一个类只有一个实例,并提供一个全局访问点. 类图: Singleton static uniqueInstance //其他属性... static getInstance() //其他 ...

  3. URAL 1353 Milliard Vasya's Function(DP)

    题目链接 题意 : 让你找出1到10^9中和为s的数有多少个. 思路 : 自己没想出来,看的题解,学长的题解报告 题解报告 //URAL 1353 #include <iostream> ...

  4. Android 国际化文字

    本例演示中英文切换 在resource文件夹添加values-zh,这个文件夹对应中文环境的values文件夹,然后添加strings.xml: <?xml version="1.0& ...

  5. codeforces #310 div1 D

    一开始写了个暴力模拟绳子的摆动轨迹 然后在Test 16 T掉了 后来%了一下别人的代码,发现需要对特殊情况进行特殊处理 首先我们考虑绳子的向右摆动,设当前位置为p,绳子当前长度为L 如果其旋转中心位 ...

  6. mpi冒泡排序并行化

    一.实验目的与实验要求 1.实验目的 (1)学会将串行程序改为并行程序. (2)学会mpich2的使用. (3)学会openmp的配置. (4)mpi与openmp之间的比较. 2.实验要求 (1)将 ...

  7. 推荐五款优秀的PHP代码重构工具

    在软件工程学里,重构代码一词通常是指在不改变代码的外部行为情况下而修改源代码.软件重构需要借助工具完成,而重构工具能够修改代码同时修改所有引用该代码的地方.本文收集了五款出色的PHP代码重构工具,以帮 ...

  8. Debug 和 Release 编译方式的本质区别

    一.Debug 和 Release 编译方式的本质区别 Debug 通常称为调试版本,它包含调试信息,并且不作任何优化,便于程序员调试程序.Release 称为发布版本,它往往是进行了各种优化,使得程 ...

  9. 微软嵌入式WEC2013产品研讨会(深圳站---2013.10.16)

    主要内容如下: 1.      Windows Embedded Compact 2013面向的市场 主要面向工业自动化.医疗设备和零售行业这些市场,和物联网关系非常紧密. 2.      Windo ...

  10. 【HDOJ】2890 Longest Repeated subsequence

    后缀数组的应用.和男人八题那个后缀数组差不多. /* 2890 */ #include <iostream> #include <sstream> #include <s ...