1. 题目:求X的阶乘值

2. 要求:输入一个整型数(不超过10),求出其阶乘值后输出,求阶乘的算法用子程序来实现。

3. 提示:可以用递归来实现,也可以用简单的循环来实现。

这里使用循环来实现:

对于汇编新手,最好通过高级语言的编程测试,然后再写汇编代码,这样效果会好一些、

求阶乘的C++代码如下:

 //The program is to find the factorial from  to
//author:Karllen
//Date: // #include <iostream> int factorial(int n); int main()
{
int n;
std::cin>>n;
std::cout<<factorial(n)<<std::endl; system("pause");
return ;
} int factorial(int n)
{
int sum = ;
while (n!=)
{
sum*=n;
--n;
}
return sum;
}

汇编代码如下:

 ; Example assembly language program -- adds two numbers
; Author: Karllen
; Date: revised 05/2014 .
.MODEL FLAT ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD INCLUDE io.h ; header file for input/output cr EQU 0dh ; carriage return character
Lf EQU 0ah ; line feed .STACK ; reserve 4096-byte stack .DATA ; reserve storage for data
prompt BYTE "The program is to find the factorial from 1 to 10",cr,Lf,
numInput BYTE "Please enter a number from 1 to 10",cr,Lf,
answer BYTE "The number factorial is"
value BYTE DUP(?)
BYTE cr,Lf, PUBLIC _start
.CODE
_start:
; start of main program code
output prompt doInput:
output numInput
input value,
atod value
cmp eax,
jl doInput
cmp eax,
jg doInput
push eax
call findFactorial
add esp, dtoa value,eax
output answer INVOKE ExitProcess, ; exit with return code 0
; make entry point public findFactorial PROC NEAR32
push ebp
mov ebp,esp mov eax,[ebp+]
mov ebx,eax
cmp eax,
je endFindWhile
doFindWhile:
dec ebx
cmp ebx,
je endFindWhile
mul ebx
jmp doFindWhile
endFindWhile:
pop ebp
ret
findFactorial ENDP
END ; end of source code

测试结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfkAAAGECAIAAAC6aM6sAAAgAElEQVR4nO2d+Xfbxrn38Q++Sd/3XJ3zruf29jZt6jZtlqZZ3PamTtwmTc2sTdqkcRZb3uLYcWI6lm1J1GatNrVR1EKtJEFSFEVqXznP+wNFCgQwgxmQkijo+zlzfMDBg2cZYL6AQYDSckQ5oqyhLRItEmWKbYFoobhcWJUrtiVDW3bbVo55c124Y1s6lJY7+Ja1O8AWLUcaGhqa67bo1LSFopqbWtqulfwWbIyOjJNZMM8PQVkOSKFqpDnu0Upa1Y8/2yNqvthShpZEQ0NTbCmVps1Lm84bWmHSLhhmNU/3Pd+ORFt5Z+gaaWmhshcO00Sx6cUWR0NDU2m6StMShlknaNaTiVX3jXd7ZP5PUYPtqP7/VbmkVrHNV6/Z6rtR2WNEMaJosc2hoaFJtKh6K9P6d97/WKmZhD5TrvUZogxjlbcWn6b5grL2QZ+m+VqqEbeStqDY0q7a/GE0/XKd9oRfV97QoPVJg9bzhL50EM+ioaHJNaXTg2a8yH/n/Y+HxmZ47elX3jP+W9B6q9xnqP8NrYSvlbHFvRY8q2lng6WPrNWnaXX+cPHjiL9O0+qu6kbVrruqH43WLzAW8tdpdf6QunAfiNAHfaUhDexLavD1/ZEOutflamt9qtA4F/U8oS8cvjNoaGiKTebEYNb6nr5Hks14Xb+v9Yk7T2rak3cSBcVcDPo0X7Ak7mF/nfHjYtBXOBnsX79r2hvBvY8j/jqtzj+iKtPVvK4PvmE897i9qBefM+Qu4YOv1/lDjKWZfrlO03zB9N5y3WWdpRlL6/4nNe31IEsHfdqeZbX+Z+Dy/GGUe9sbODyth9yjoblralqvSWO9h7NAiat1BqG3Nt3/I63umm78WBL34Bta3ZN1pUt4/WqdyuX8gWi94n8pOGrO03p3921K3sr79ct12pN+Pc2CrxdEv2r3f9z/X8Ek94Kb9dB6NLRqtcPQ+kzizpNa3dUEWbS+dPdGv1an/civF/sNH4M+rc4fLvxbfsOn1acV/jcQ9tdpdf5r+zczgkb/Boo3jvbvexSNi/+T2PNmXK7zjxROMAUK/6UwnTl0/5PF9U/69RafVvqfx0LxxLBgtTF8XGBswZDVG8H9k8GVve66KzorbVXYxE7TLRf+RYkP+EoX/nstsB/QF9jTbv/rxTKH928E1V3W92R62F8aCE3TrFpvunfEmn2apvmai+cGrc4/zFiKBc/sm/ULbuPM4TYOGlpVm43Wm76bLUxMIiIi42w3fdRstb7fp2m+FiLLRb3hTv2+mu+LbLh0e6d04W8Q5TKt1wznhr3/IgTPlqSc6dfqilq/b7Bn8yO/bjrraOVnoFIyhdxK/70o/s9Dv1qnPenXM+XSX9DrBd3/pFZ3Rdev1BU1vdhKN6OKQu9rKV8O+etKsl5Q+cJyyF9Xbrx/ejC1wlln778Ouv/J0lZMv1Knlf8/QL9ctyfr6T3JLizv3x0K+euKnXvfE5SfXYz/dSgtF09CQV/hG4XSqnmiFPWf0bQz/Q53cqwX+GhoaBU27nezRlkvLBj/ldD6vet6mxs4tt/Q6v4fab5Wpl+r25fds8GyO/um6/qwyY/hrGC8ci9tZTqp7PUX4u59nVC8L793SV52j37EcAemIMp7H/NsIc9azmnaueBCnoX8dZovaLax3MMxXuaXruLLbvIUTwDFu/BFzS1T6oKYGu7qlPUYrv2LHnj3ZJp9exfme9fydf5h800byz2coLmGvbW6/wnjfw6sZncS+HoWDe1I2qxY603X9aZ+u2cu+9/QhPfry7W7dCV+Nhg8a7yd4gu2+vbPB6Wb5uXf1gbfKNzrN91mKX403Wrf3zbo0zTftb1zSfANzdcS9JV9Cbyn+Hs+ixfsbGGXLeywhW0WulWnaZr212B6k6V7fJrmC2wGX9e01/tYeoeld1g6X1T8kvobtd4XNN2yN96CX9i/LrbVenNnwKdZb9+XHM7r/icOROsLt2uY3Y0do9b7mjhfz+IeDhraITfN+BaW4Lreeg6wfb4+fMdwm4WxbNCn+YLZ8mv5TPEmQ+n7zyfryu9y1NXtyWu5PpZ/LVm6exB8Y/8mg+GyN+jTym81FG+tBAuPhL4RLH4DvH/PxLd3RV/Sd8YWGAuc0568pac39Mtv+odX2PwyG75ep/3IP5xj8zn98o+0J35Up/13/9AKS63pl9/yD2+x9M5+tsa054tZ7V0I+4IGkS2XSMZSuv8Jre6SzlJB3xN+vfBVZ5NPKxk0+TStzj9U/Ba0JLtpFnx9T3P3757PM9bs8zU7a33hZn1RzYO+4pV78Z5MQdP3ttIv1+3fpn/Crxu2DZ7RNM0XTBGlKFFf52vEd7NoaEfXtJhhygnu1xulv7Bg0vrSi7LZxJ0f7d+i8I8xZtb6spvge3eiC2K9f3lY0j6DHhXEqChtwTOadibIUoylDLcLzvj2tXLI8AXjE0X/xe8qfYH92zJ7sp4ungZK6p/Os/QOS/f4tP/hH86x1P4tmH+7NLCTSuykEjtDF/9N07Qn6uOpeZbKsFRryWbv6rt4c0Mr6LUhK18jY0nGBv11Wp1/kLEkY8mgr9CfYCyh+5/Q6up1lmSs0fD9amGrhN29lFRR95t8JUEvnP+0omQ7a71xE63O93qdSev3Kyqet4xnlL3lob1zVXG/9OOZSzS0o2ya8X/QLp7DmS/X+mzx9y9zRDnGjC1r+M5zxHipW3w+L5lniV2mc9reqh2m7zB9m8XL215/0SC+w+LbLL5j6N9liV2WZPvNeCE8X3ZRXLy7ssvmt9n8BptfDp7RtDON+WR0Izm7npxZTU4tJSO5ZCSbjGST35/VtLONU8uJmbVEdDMZ30mmWTLHUmsstc2SuyyZZ0nGEozpjOmMxfIstmvX8iyeZzFTY/stXt6MnQXPCUN1yeL/D1w8K1l5c/EuFYQeDe1AmzZDNE00TTTFlLU+VdR6k9Dv/yovY0vlWm98Temyvifx+i6Lb7PoFpvbYLPrZW2u0DbY3CabW2ez62xmjU2Xt5liK6ydsa5aZ7ObbG6TxbZYbJvFdlm8cObI70lwoiiU+zdD8mx+m6U2WGqFJTNs8OK/aX/oSoxnEqPpxEgqMZxIDMYSg7HEwL3XNO2/ffhYH07o4bQ+vqhHlvXoVmKeJXIsucH0TaZv7wWd22azW2x6k01tsElDm9pg0xtsetPQNthUoRk7twzN0D+zzWa32dwOi+b31F9nLMH0+rri/3uOpAl/CQcX9Whoh9y0yTxFdmlim8a3lH8PJ2nR+qXy33ZfLf7Ce+kngks/9ZUmShHpeYpv09wmzazT1ApN5Ghscb+NL9J4liayFMlRZJkiORrP0liWxjJ7bTRDo5micZYmsjSeLdos0lh2r41nKbJEkRWaWqXpdZpZp9lNmtuiuS2KblN0h6I7FNuleJ50RklGSaLkLiU3KLlKqRwlkyw5u54YW9QH44n+aOLxbKJvOtE72ficpmma9uxtvTui903rwWh8UI+H5uOR5XhsJ54mfZliqzS3SjNrNLVOkVUaW6ZwlkIZCmVopNAWaSRL4SyNLtHYMo0uUThH4exeZzi31wprx5ZpbKW4sLzXOb5KkTWKrNPUFs3uUJTtXTgn1H/1tLrN9vcsxUIPrUdDO6CmjW1QeJ1GVim0QkNLFFyg3gR1zrH2qe22qa1Ca5/a7o7To3kaylF4jSY2aWaXYkSJ4g9eFn7LPlf82yOrlF+l3VXaWaXtFdpZJpYr/vzvglHoGUW3aWadJpdpPEuhNA0mdoPRzVLrj24OxLcH9Z2hRH44xQYTuwP6djC2FYxulLfN/vjWQHxnQN8Z0Hf69Z3++HYwttUf3y70DOq7Q0kWStPIAo1maTRL40s0sUwTKxRZpck1mlqjqQ2a3aS5bYrtks5I3yJ9jfQcJRZIj+7oE0v6UFLvmdK7I3rXhP5wLNERTnSEE+1hvdAejuvdk/G+mdjjaGxkITq1FtVZdJFmFimSodEMhTI0OE/BBPVFd7pnN7pnN3tmN3vmtnqj233R3b44e6xTMEGPdeqLs77Ybm90pze60xfL98VZn84eJyiYpGCK+uepf56CKQomKZik/hQNLtBQhkJZGl2hiQ2a2qFZRlGiGJFu+Y3Sw2xWlXf8vbMjnw9oaF5t2tASDeZoYJGCC/Ronrpi1Da11TS63DC00DCYvjuQvjsw3zCQbh5b6ZjZ7k3Q4CKNrNDEJs3kKU5UuLQvXNcX7t6s0u4aba7R5hptrNL6Cq0v03aO8oWL+nRR6BNE0W2aXqfxZRrJ0EAi3ze73hlZagvPt4fT7eF0WzjdPpp+OL7YGcl1Ty33TK92Ty53RnIPxxfbxzLtY5n2sYX20YX20YWOscWHE9nOSK5rcrlzcqkzkuucyHVOZB9O5DojS52Ty12Tyz0za72zm49i20E9P5DIDyRpMEVDaRpeoFCGRrIUztH4Mk2u0/QmRXcouk6xJYplSE+QPrMRH1mMP47GO8bi7aN6WzjRGkq0hhIthtYW1jvGY52RWPd0dCA5O7Y0M7s9M0/jCQrpFIzle6M7nVPrrWNLTaF0Q79+fzBxfzD1YCjdGFoIhLMtY0ut48ttkdXW8eXA6FLTSPbB8EJjKNMUWmwOZwOjucDYcuvEStvkesfURvvURtvketvkeltkrWNqo3Nmuzua79WpP03DSzS2TpO7NMNorij3utzPVle3GZ/lNao8rujR0I6kaY/T1Jei3gR169QZpdbIxv1Q1v848W3XzM3OqRsPJ7/piNzomLzzSG8cybZNbxXkfnSVprf3L+0N1/W7q7S1RmtrtLpGy6u0vErLy7SWpc1F2k0zmmeUYpRgpOdpZpPGVyiUof4E65lZbx9bbBrU7/ZO3e2bvts309A309A3+yAYbRzUm4eSLeF0YDjVOKg/6I/dfzxXaPcez917PHc/GH3QH28c1JuGkk1DicahROOg/mBQbxzUGwcTTUPJpqFUy0i6dXSxfWLp4eRq5+Ra5/R698xGz+xmz9xOXzz/WKdgkoYWKJyliVWa3qTZVZrNUnSe4jrFJ9diQ+lYz2ysZURvGdFbRpItI8nWkWRLaG+hdURvH9Xbx2IPI9HOydmgPj2SnZzcjMRpeHb30dTmw/HVQDh3bzB1u3fuZkfkWvPw1y3hb9rGbnZMfNs5+X3P7O2+6J2gfncg5X+sf987923X9I2OyM2Hk98+nLrVNfN9z+ztvpg/qN8dSN0bWmgYSjcMzt8dnL87MH9/ONM4utQyvtY2udkdo2CahldofIsm8zRDNOfqbxpU3owP8sY4L8dC6NHQDrNp3XHqitLDuXz7zE7r5OaDUNb/SL/xcPJKU+hy4/Cl+wMX7/VfbOi/3jZx55HeFM49nN3pS9JwjiY296QkWbxln6P8Em2t0NoqLa1SbpUWVymzQgtLlM2ylUx+Yz6/k8xTIk/xPEXzFFmjcJb6k9Qzt906nrvfr/u7Ijdahm60DN9oGb7RErrZGrrVMXa7K3Knd6bh8dwPvbP+7qnbnRO3OsZudYzd6hi91T56q3301sOJ77sm/F1T/t4Zf8+0v3vK3z11u2vK3z3l757298zc6Z394VH0XlC/P5hsDKUbQ+mm0ELhkrllLNc6sdo+udY5s9UXp/4UhbI0sUaTOZpaoNkkzUXZ3MTq3MB8tGsm2hyKB0KJllCyZSTVGk61jqbaCm0s2T6ud0zE2iNzHZGZR/HIUGZ8fC08mw9OrD8cWWrsn7/dF7vRHrn8YPgLf88/b7R++m3H+dtdX9x59FVDf/394SvNI9dax7/pmLzaOn6pKXTh/sAXdx59+cPjr+4GL9wbqL8/fKU5fLV14vrDqZtdcze65m50zd7omrnROf1tT/R2MPnDYOZ+aKl1aqcrQcEsjWzQ+C5NEs0U5TV2dC3qpPIQejS0Q2ha+9R229RmS2SjeXy1aXT5h/7Ut53TV5tHLtx9/OWd3s/9Pee/7zz/XeflxqFvO6cbBuZbI+s9MTaYobF1mmN7l/bFW/Y7OdpYoaVVyqzSwgqllimxxPRcfj6TX0zvLCW31xI7eX2Hors0u0MTqzS8SI901jm12RRa8PfOXm8J1d/trW/ovdTQe6mh71LDo2uNg9cDoZvt4991Td7qmLjRNvp1IPR109C1psGrjYNXGweuPBi41jz0dWD4ekv4RtvoN62j37SGr7eEv24Zud4S/qZ19Hrb2Ddt498+jNzqmrrdM+vvixnbD8HE3cH5+0OLjeFc4dK4f55GcjSWoUiKpuI0M5OfHV2ZCyajD6eijUPxpmG9eSTREk61jqXaxubbx+c7JuY7IsmOiN4RiXVE5jomp3r0iYGFcHh1aHKne2SluT/t745+3Rr5qmHgk287P7jS9PYXt31f/fDepft/v9b88fX2T77t+szf++Xd/q8eDH/+Q/+n3/d8fLPjw68Df/+65ePr7R/fePjPb7s+vd37+Q/9X94frm8eu9g8erFp5EJj6KsHw5cC4193TN/ojn/3eP5eeK11lnrTNLRO4W2aYDRVwV+xqUoz/bUE6491HPkEQEM7IU1rmVhvHl9tHltpGl26P5z1P9K/6YhcejD0hb/n/Pedn916+OnNtk9utl5oCF5vm/A/TjSNrjyc3Q2maXSVZvIUzZPOKEWUpnyGNnO0vESZFUouk77Eorn8XHZ3JrMTS28nUltpfTOnb23Gtmluh2Z2aHSVBheoV8+3T27cG5r/rnPqSuPQ598//OL7h1/c7vzidueXt7su3H10uXHg65aRGx3j37SOXguErjQNX77fX3+vv/5e8GLD4wt3H9Xf67/0YPBy49DV5tDV5tCVplDhPyWXm4avNIWuNoeuBELXWsLX28dvdERudk7feDh14+HUNx2T33RM3uyc+a4ndvuRfqd/vjG82j6906vT0CKNzNNYgiJRmp7Oz4SWZx8l5tono/cGY/eH9cZQoimUCoykWkdTbWOptvFU+0SifUJvj8TaJ+faJye742PBdCi0Mjix9XBo6V5P4kb75IX7oU++637/ctNb52//6cOrb/zjxl8+++7tr3545+KD96+2/P1Gxz+/6/nXneA/bvV8+E3Hu5eb//ZVw7kL93wXH7xzqendy4EPrnd8/G33p7cfn787eP6Hgc/u9H/qf/zJ7UefNwxdaBy90jb9TZd+e2i5aYp1pmhgjUJbNMZo0vL7R4fceL/HdOTHPRraSWta8/hq0+hKY3jpwUi2YThzuzd2vX3i0oPBz/0957/r/Ne3HZ/cbP3kRuuFu4+vt43ffqQ3ji4/nN0JzlN4labzNJunWEHu2W6arWVYNstSORbL5ueyu1OL25HFrfGFzan5zWhiI6FvLMQ21+a22Ow2Te/Q6AoNZqg3Tm1Tmw2DC992TV9pHDr/fdfn33d9/l3n5991nv+u86sf+i7dH7gaGLnePnGtdfRqYORK09ClB4P19wcu3gteaHh84e6jiw3Bi/f6Lz0YvNQ4tNceDF16MHSpcehy4/ClpuHLjaGrzSNXW8autY1/3RG51jZxtXX8asvolUD4atvE9YdTN7qjt3r1hqFsILLVHaP+DA2nKKzTxBxNTeWnh5dmehOzLRNzP/RHGwZi9wb1e4PJB0PJxuFU00iyOZwMjCZaxuIt49HAxEwgEumMjvalh4eW+8e32gdyd7v1r1sin98d+vhGl6/+wZ8//fb371567e9X3/jk5l8+u/32Vw2+y83vf93+0c2eT24HP7rZ8/619nOXmt768u5bXzb89cL9ty8++Ft947tXWz/4pvPjW72f3gl+cvvxP77v+/hW799vdH/y/ePPG0IXmyNXO+Zu9WfvR/IPUxRcpeEtGmUUKe7mI/+xPeg7GtrRNq0o9LmB6OpwbHVgJvtoItU9Eu8YnG4fmGrrn2wNRlqDka5Q9NHE/ODsUji5GcnkZ1dI36R0njKMFhllGS2xnWW2ucJWVvPZtXx6bTe1upNc2dFXtvWlrWRuK53dWlzcWspsb2Z22MIupfOU2KTYGs3kKJLOj8TX+qczPWN6x+BMx+B0e7F1Ds91h+O948nHkflHkVTfeLJ3PNEzpneH493heOdIrDMU7RqJFT52j+p7LazvL4/q3aN6z1iiZyzZM57qnUj1jCe7xxLdYb0zHO8eS/SMp/oiC4+nFgdja+HkzuQiza1QbIn0LCUzND/P0vH19HQ2PZpMD85lBucyg7OLg7PZwdnc0FxueC43HMuGYosj8cWReCasp8PJVCSjzyzHYxtzyd2J2PrQdK5vbL59ON78eKqhM3y7tf/mg+5bzX3ftwTvtA/+0Dlyr2essW+yOTjbOhQL9M82PZ661zN+tzN8tzN8tyvc0DXa0D12v3ei8dFUc3CmZXAuMDDbHJxpejz1YG+r+MNwsnt84fHcWiiVj+RobpPiO6X/b5X95Xc0NLST2bSm0eXG8NJgdO3Cdy3Pn/3HM699cOr0uadeevMnz5/58XNnfvzsa//+m9d+/JvXnnrpzV/+4Z3n3vj4pbc//8N7F898XP/m+fpzF+p9F+rfvVD/3oX6D7764sOvPv3wy48++vLdj754+6PP3/ro/Jt/P//nDz87+8Fnb73/2bn3Pnv33c8+fOf8v9754qLvy/pzX9W/db7+7Cf1f/qo/vfv1f/urfPPnvn7qdPnfvri2Z/+9ux/vvDGT154/ScvvP7U7/7y9Ctvn/q975n/eu9Xf3zvl39895d/eOfU732nTp97+tW3n37lrz9/+a2fv/zXp195++lX33761b/94vS5X5w+d+r0uVOnfaf2Foo9v/f98g/v/PIP7576ve8Xr/7t6Vfe/vnLbz396tunTvt++cd3n3nt/Rf+/M9X/vbFH9+vP/uP+r98VP/WB/V/e6/e985F35v/eue1D9999e13n3/93efPvPfcn95/9rUPfvNfHzz72gfP/emD58988MLr7//27Hu/+8u7L7/17itvn/vje2+//vFbb372F9+F1946/8rZfzz/2ge/PH3uqd/9+cfPvvZ/Tr1S99Pn/+fPX/zfp17+f786/e+/+eNPnj/z0xf//POX/3rq976nX337Zy+9+dMXz/7k+TP/UWjPnfmP58785IXXf/rin5966c2fv/zXn7305lMv/vk/f3v2J8+//tSLf/75K3899XvfM6+9/8JfPn31nYt/+qj+L+fr//pl/bmL9e/U179XX/9eff37aGhoJ7tpTWMrTWMrc5nN//Wz38r/QAI4LgQCAaV+eQMAwHGieXy1eXx1bnHrfz/94lHnAqpGSaltJTtQRMYDAMALFH4FIZbb/b+nXj7qXEDVsGp9wICSBwCAF+iKUVeMEivs3399+qhzAVXDVuvdeQAAeIHHaQqmKbXOfvL8adNFn/UaUP6q8BBQukoVeOB9tO056JRcYHvBrqr1ATmU8lEqQckzr2TeHuSlZBtXtV4AjgfDSzS8TOlN9tSLp42HuGDmHEWaZkx5mlapOrH9aNuj6vMQ4KmYSbPEQsnbvCrJVGsTwf4SDILkR9dZAXA8GNug0U1a3GE/f3lf62Xk4Gjh5aaUs9LkrzCxg4Mnc7Y9pnp5Dm3t3WXiaF+51sscDMZAMnFr+eAHwA2TOzS5Q9k8+8UrIq3nTQ/bfuu8Etu77jfVwkueh21uMnWJ83SsVzWuUhWlTtseU1yeQ1t7d5kc0FbGDXkeTAbivVCtrACoUabzNJ2nXJ6devW0cW5oEvc0rCJlXWWcYzx7d8vW2Wubs4Bq1VvJssbRLPlCbC2t42Os1Nhj3ZC3IJmJ7X5x3ErS2HYrXlzjwFoDieO6ywqA2mWW0SyjJcZ+eVr5u1nBfDBOPOuCpCtVe3FKAmNbLRAHrcqy47AoVWHqFC/wRs9xWTIT+UIqL1k8zsbR5m1VlawAqGkKvz27zNivDkDrBZ2OBmJ7XmjVKcoTAqV8XC/zQitVwctcvCDYROajYybyJbjeZY5xA0VsNxTHVc0KgFqn8MeDVhh7pjKtl5lI4jkpv8zzb+yXnKtie8l6K8lf0l6mBFMnb8G0bDWzwttKkIk1K5M3cf5K9qpjLo4rsxaA40fhz0CvMvYbodYL5r91Ttp2ilcp9Qv8a3yNsKVkKQhha8OztzXj1SWOK5M/bxNjAqYF07L1o2qnYzKmVbbGvCHi+ZGMa+tfMq78LgDgGDBPNE+0xthzp/HerHcwSbxV6GVU+wDyAgAcERmiDNE6Y89D6z0ET+utou/oAQDgBRaJFok2oPUewnqfxNrP65FZBQA4fiwQZey0njfVbftd64KS+lQSCACguZpBLr66OKB5Xcn0V03Jg6SI5g33cATXgJrw6zKTgeC7L4E3x+/ETtzuAaCqlO7piSepbf+Rz+sKdcZao0xQ71D4y+CrjD3L0XrHodTKR81qxjuMBD3W0I7IFgzACSbA+WZeUgcFM/0Q5rUgunWtozicONGYXKfZLVrOs1/ztd7Rifw+kDGQiQIAUEUwqXmTVF5tD2FeK+kMr19J2TxFOEsTK5TbYb96RVnrbU/CNa71gvO8CzOTve2ViO0qmX7VJHnR5as4UOTrkvRTO6WpclTJB/iTWjBJZZZlfDpmJTCwzhf5cLw8j+/x45KBeRpZpMUtduqlPa23jqntWBuRPFBKPY67zYptGqp7S2kTeWOjJW/Z+FGmXya67W5yV8JBw6tdU5xyqkN0hAhyO5LMrUMnmEqmnRUon6cBu2lr9SZTo20mvA0FR454tG0/1vLBcyA8iu8OpimzyX7xu7Lr+hLW3Wa7j62b2BrbrpXZ2bY7RmlvCY6hCjcxmomXA+VTyLFfJq543GoEXm5KOZuMj2O9R4j8tLI1Fn/UDn5ei1OyHhi86AHDFLNG8TJ98Z3BeVrYYL94sSKtF4y7rUNJ58YQtv3WTlsEHnhHoXhDmUDGw8t0tIn7JePyjmZBXbb9vBxU/Tj2O+YvU69glWRdpk7HeqUzHXQAAB5HSURBVFXHR1CXeHzEfsSDI6aUvG1/VTBlbttj3YTXzzPm+eQVYjvU4k08y6P47uB82XW9aUzFu824VryzHTe3rjXZ2CJZpq2xqUylw1EmSumjsQRBv2YpUzKc1Y84H3Gq1jyrsmxblEyZjsaqdfE2ceGHl5u4LoGxzLIqRieaZXcYsSYpaWyMYgxku1YmGZ6xYyBeCN5onCD6kyyUocXN/fv1hX7egvWAsF0l2AfWnSo4JsQ7Rn5v8Q4gRw8yNjxLa5nW41uwoWpERz8Ct4I85V2p2otTkjd2jCsuR75enplxrUxdAmOZZdcE7A4PnlurseCjZjcUphptN7eNbuvc9K+1n+fHZCMO7WWG0jSao+w2+9XLylqvusN4/bxjQnCsiEPw4toe60qbKFma5pJxDtj2q8Y1mTn6EbgV5C9pILbnhZYfYYHPCuO69uMirqOxzLJkFNu4pmXjvwJjx4+OPTLLjrFkjAVbmYqtfDyPGSOLe89cPiPxzKXjsDp22vZLhrDF1piH5Bzj9ci4FfgsfRSk4TquTAkyuanWpVo7L4Rk1bYhKolbiR8Ze8cNBX4E/jUnBbTFuonAScAJnnPbHl6Sks4FThyNJcfNxXgeM8ZyNLlKSzvs169WU+sDnOsFx56q7GYBpiOJd3gJDjieT1tXrvtd1yJOyTEZQWmu+wX+VUtWCiFZV1X8aPxDSxA3ILFfrMulHtOCI6U8rU6sfir5KGMg6Jc3tlZktZT05mI8jxnjOZpao6Ud9hu792atQyazb+QPIBkDQb9n9wo4YKzSeRxRrUJwwrB+rH2td3fSEvR746jgMrZIkyvc63rbc53qWVRwwpTpse0XnHgAEBMwcNS5HCry001TuYdzaPNaNajY8qTtfW0kTRM5ym2zZ145bRpKeY0ujZ38cCt1yuQAABCjqvVKrsSrqjKvD0FnvMxwcmdskXJb7JmX8bdKAADAowzqW6MZym3tPXMJAADAgwwl9q7rofUAAOBZwmmKLNHS9t7z9QAAADxIZJlm1ml5d++ZSwAAAB4kukn6Lq0x9hy0HgAAvIrpb4sDAADwIBmiRaINxl6A1gMAgFdZIloi2mTsRWg9AAB4lWWiZWg9AAB4m1WiFaItaD0AAHgYaD0AAHifgtZvMvZbaD0AAHiV1eL9ejyHAwAAnmWl+BwOnq8HAADPsky0RLSB92YBAMDDLBFlidYZfg8HAAC8yxJRhmiNsV9D6wEAwKtkidJEKwy/Xw8AAN4lQ5QkWs6zUy9B6wEAwKMsEOl5WtphT7+4p/W2fypeCdPfJa+RP+N7+JlUOIwH59+6VeU7XTJohf4rqbeS0LzxOYRxA6A6zBNFdym7zX72wmlNXaZ5f6P9qLSeF+uo5uRBR6yW1lfiTSni0cq9jJl4W5llAGqRFNHcNi1usaeeP206Xm0/2l7XmHwerdbXfj416/8QtP6ovMlrvdgMWg+OKymi2W1a3GI/fc6s9SZstV6zO8oFcyBgwNa5rbG8nwPNh0fAgjW0TFyeE8FQiJdV6+IlL3AuMz5Wz+J8eMU6piqut8JUZQqxDaqaJy95yfwBsGeeKLpD2W2b63p5bI/RypeNH42Hu8D+oPPhlS8ObUr74MbHNjfH8REnr5SPLYFyHP1b6xJnW608bROzVuFob0xM7E1yWeAHAFnSRPE85bbZz15wr/WaujZZtzViXSV2K5OP1T/PiSAfMVZj3tR1zEdm2eRKUIJjngLnSvnwcEyDV5eLbZVslBK27Rf0WPPn7RdxjYJxAECWRaIk0dIu+8Xv3NyvN2I7OR0nKs/GcZX8Wl4+8vPZERlXtvk4GotzdlejZOEu8uHhmIYgtFKekv5lkBk6sY1p16juF54fANyQK71L9YrDcziBIgJvAQNWJ6rL1o+O9gedjyCK8aM4VdfjYKpF1T8vYUEhVRkfmTQEoR1dVTFP21iq/o07Qqtgv/P8AOCGJaJFojXD7+FYj28ljMclb1pK9gsykU/SZCYZQmkQAhYcQwvqtc1TYCP2L4ir1K+VS49jnrzxkVnlaC8fgjcO8hi3FeQpGBPH8RT7d6wdAClWiHL4nUs5rHP7cKafQEdqiqMaHwCAM6W/S4W/VVLLQDoBABWxRrSKvzcLAADeZo1ojWgbWg8AAB4GWg8AAN4HWg8AAN5nFVoPAACeZxXfzQIAgOdZJlqB1gMAgLdZIlom2oTWAwCAh8kS5Yg2GfsttB4AALxKhigLrQcAAG+zQJQh2oDWAwCAh1kgWiDawO/hAACAh0kTLRCtQ+sBAMDDzBOlofUAAOBtUtB6AADwPCmieWg9AAB4myS0HgAAPA+0HgAAvE8S9+sBAMDzFL6bxfP1AADgZebxLhUAAHieBaLFcq0PGHDtluekKs5d53OYEbXyYk0JHNU4AABOKJlyrTeqj4wS2RrwnKg6ry68iNVKw+pHEPEIxwEAcBJZJMoWtd722tP00fY6XeC/drTeNmi10rD1I3myhNYDAA6cLF/rTdhqveakVvLXtkasQW01WmBcC3F5OfDyAQCAgyJX1PrnnbRegO2GkoJr/Fj6l+dNclngR7C5u1iOfnjjIBgfAACoMjmiRaJ1xp6rQOs1OWF17LFqNE8uxRot0HoXGu1oL+ivfEMAAKgCWaIM0Rpjz7q6X2+kQm3VLBptFX1J5zytl+nhdbrwI2MArQcAHAY5ogWiVcZ+86rDcziOWq+VXxFbnTguS2q9qh/bcqybuItVXT8AAHAglLT+169U5/l6o+TZCqJ1lUCUjZa2/bwNbe15CVvX8gZBMDjV8gMAANVnqaj1z7yM92YBAMCjLBFlCtf10HoAAPAqK0SLRGuGezgAAAC8xipRjmit+N0sAAAAD7JGlCNaZ+xZ/M4lAAB4lVWipeJ7s0edCwAAgINhjWiZaBO/Xw8AAB5mnWiVaJOxF4vvzfKef8eT4CVqajQEe0c1zwp3dHWPkxo86uTzcfH+xBHWe1SDLHhJpdZ2vRdYJ1oj2mLsd6dPByyvrZbMMPRGqjIaVRlP487izRx3DmUsK9lcMo3KHVbxuFVNRvXc4CJE5bgo6oDimnqgOVVmg2idaJuxl8r/LpXJDONeXaquidVC0iHPrNbqOtrj1oXWHyYBA0qbHFBcY49qYsCZDaINFa23PfeqCoRpE+NHSf+2m6j6CViQLEGQj6oTyXrFriTzFBSrNA6O+VsTO9C6eP2OefI65fMX11Vhvar5COpVDS2wlB9P1bimYpW8AWcKWr/D2MsSWm867IyWkjuGt4l1N8sYW+Pa+nFMwBpOvgpxPpIe3PkJlOM6z2rlr1XpOHGsSz5/1XE25WzaVjIfGXurmTii7cDylq1mjtEdzQTGgvFUcuUufyCLktablgMWHMOJD1PTPnY8pq3Z2vqxpmothFe4YxW8HlUPtgm788Nb62I8VePyhtd2/F375+1HST+CbY2erdvyenh1SRYrsLTNh5e/0UA+unySPGPJfeHoyjSSSokBZyrXeqVwjoepqrFpQ3d+VMvhWVbowcWcEZsJBkdpR8jH5Q2v5LCI/bvIWXWcqzKekt5kLN2Ng9KwK+0d1fFUchUo4iIx4Ey1tN7FgaU0VUwGgXJsN5EPai1HvgqZQgQelAbEMRN3eVYrf56ratXlIn/Vca7KeEp6k7F0Nw62u0Y1tNhYcjyV4irtC6CMSesDBko2ph7rsuoOtnUoOKwF/lX9aJzj1fpRJn/X46BZRtWFH8lxs63XtnbbYZHP33ZMDqguef+2/bb2Mk5saxTn41g1z0wyH1Mn76M4rqOxdSvJVJXiusgHyGK9rj9QqrILjU5wTAAAgDOHqfVVPGPj5A8AAAoc8nU9AACAIwBaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3seo9ZLPvR5ZrqCcw9kjR7jfj+pgs8bFc9/g2GP7LlVhlfWwPtYH+vHNXMBB75GS/8Pf9aoRq5We42F/rGcBOLmcEK0/vpmLOTStP0xcXEFXJU9eXOuk8OSxBDxOhVovnh6V9/OwtQ+Uw+vnrbJ22pYsn4+MsTUub9l1yZXXxcvfaiCTpExc+QzF/lWD2sY1FavkDYBaQfB7OLxJbvuRNwF4NjLLPFz4cSyHZ1+5UlSevzEZSbOq1BUox7YE41oX+TtGdzQTGAvGQcmVu/wBqC0E1/VWbIXDVg7E/bZube0FaVjtBXNbNa6xx0VKMsYulq358MyqW5egXmtcpfxdhJY35uWj6so0kkqJAVArVK71YjPHSegY1DENmbgyaUiuUoqrZO+4bNUanllV6hLYO46nZP4uQssbq+4XnmWgiIvEAKgVqqX1B7Esk4akH6PcKNnLcND5G5OXNKtKXQJ7234X+bsILTaWGU/VuBWOIQA1Ae/5epNZwIK139Zes5tyAnulCSmYhOKUZPwoTWlevQJj2zxt/fDKNC04lqBaF89e4EcQl/dRHNdFtpKpKsV1kQ8AtQXemwUAAO8DrQcAAO8DrQcAAO8DrQcAAO8DrQcAAO8DrQcAAO8DrQcAAO+jpPV4shgAAI4l8lqPt0gAAOC4IqP1eGMQAACON7iuBwAA7yP+e7NKP2MCAACgRsF1PQAAeB9oPQAAeB9oPQAAeB/V53Cg+AAAcPzAe7MAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9xL+HUzLDw/U1yOHskSPc70d1sFnj4v0ScOwxXdcbD2XrYX2sD/Tjm7mAg94jJf+Hv+tVI1YrPcfD/ljPAnByOSFaf3wzF3NoWn+YuLiCrkqevLjWSeHJYwl4nAq1Xjw9Ku/nYWsfKIfXz1tl7bQtWT4fGWNrXN6y65Irr4uXv9VAJkmZuPIZiv2rBrWNaypWyRsAtYKt1vMOaNuJZLvK0UZmmYcLP47l8OwrV4rK8zcmI2lWlboC5diWYFzrIn/H6I5mAmPBOCi5cpc/ALWF4Lreiq1w2MqBuN/Wra29IA2rvWBuq8Y19rhIScbYxbI1H55ZdesS1GuNq5S/i9Dyxrx8VF2ZRlIpMQBqhcq1XmzmOAkdgzqmIRNXJg3JVUpxlewdl61awzOrSl0Ce8fxlMzfRWh5Y9X9wrMMFHGRGAC1QrW0/iCWZdKQ9GOUGyV7GQ46f2PykmZVqUtgb9vvIn8XocXGMuOpGrfCMQSgJuA9X28yC1iw9tvaa3ZTTmCvNCEFk1CckowfpSnNq1dgbJunrR9emaYFxxJU6+LZC/wI4vI+iuO6yFYyVaW4LvIBoLbAe7MAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9oPUAAOB9bLVe8rlpAAAAxwOr1vNeSOGtBQAAUOvIvDcLrQcAgOONzHW9EWg9AAAcP5S0HkIPAADHEnmth9ADAMBxRVLrIfQAAHCMwXM4AADgfXjP4Vj1HY/YAwDAcQXvzQIAgPeB1gMAgPeB1gMAgPeB1gMAgPeB1gMAgPeB1gMAgPeB1gMAgPeReb5ew+/X1ySHs0eOcL8f1cHGe28cUwAcY0zX9eJXZI/1gX58Mxdw0Huk5P/wd71qxGql53jYH+tZAE4uJ0Trj2/mYg5N6w8TF1fQVcmTF9c6KTx5LAGPU6HWi6dH5f08bO0D5fD6eausnbYly+cjY2yNy1t2XXLldfHytxrIJCkTVz5DsX/VoLZxTcUqeQOgVrDVet4BbTuRbFc52sgs83Dhx7Ecnn3lSlF5/sZkJM2qUlegHNsSjGtd5O8Y3dFMYCwYByVX7vIHoLYQXNdbsRUOWzkQ99u6tbUXpGG1F8xt1bjGHhcpyRi7WLbmwzOrbl2Ceq1xlfJ3EVremJePqivTSColBkCtULnWi80cJ6FjUMc0ZOLKpCG5Simukr3jslVreGZVqUtg7ziekvm7CC1vrLpfeJaBIi4SA6BWqJbWH8SyTBqSfoxyo2Qvw0Hnb0xe0qwqdQnsbftd5O8itNhYZjxV41Y4hgDUBLzn601mAQvWflt7zW7KCeyVJqRgEopTkvGjNKV59QqMbfO09cMr07TgWIJqXTx7gR9BXN5HcVwX2UqmqhTXRT4A1BZ4bxYAALwPtB4AALwPtB4AALwPtB4AALwPtB4AALwPtB4AALwPtB4AALyPrdaLn5vG88UAAHDMsGo974UU3kcAAAC1jsx7s8YeXNoDAMDxQ+m6HrdxAADgWKKq9bYGAAAAahp5rTdd3R92ogAAAFyjpPU8AwAAADUNnsMBAADvw3sOx1bf8cUsAAAcS/DeLAAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB+Z5+tr7bH6w8mn1qrWVN5ic/cyRO3UK8jftp9nX0l/AO+XAC9h0nrN8ktnBWrtED/ofIyDUGGgKuZ50NpdI3vZmIat5kraV7Ks8Y+BGhklANSQ+Y0EXucRcmhaXyN+jmP0qiDQYkebypetWm/sB+A4oar1ttc4kkd/oByrc9tlwSbifmsnrzpequISHPsl85fJUymuYxUV1nWYGEPLpGG1t46nuF+zVM3rB+A4oaT1toe+YCtbJy6WxeFk8rFOV8c8xZYy+Vs/ytvbRpfMR8Zexokgz0PAOgKO+4U3YpL9xsHX7I6rgOUwA+DY4OIejlWPBNPP0YnMsnWOqeZj7FFN1dpv8i9wKD+YMnnyeqz1OiYmma2qh6rDGyv5wdHKR9Wx3zr+vH4AjhOVa718LJl5ywskacbLp5JUlfKvxI9jngJjx0Ay8OxV/VQRyTF3vb+sy9ZVvH4AjhPV0nqZCeBu7mlVvYcjifwgSMZVtZfJynH8K6za0f8BoTrOB7Gscfad9SMAxwOT1gcMlGxMPdZlyaPfcV6Zppbj3BOk6tjpmKetvW2e8pu4zjNgQT4fmcId/Tt6qC68uI7jJjmkMv2CENUqE4DDA+/NAgCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA94HWAwCA97FqfcCAa7c8J1Vx7jqfw4yolRdrSuCoxgEAcEIxab1RfWSUyNaA50TVeXXhRaxWGlY/gohHOA4AgJOIUettrz1NH22v0wX+a0frbYNWKw1bP5InS2g9AODAEWi9CVut15zUSv7a1og1qK1GC4xrIS4vB14+AABwUMhrvQDbDSUF1/ix9C/Pm+SywI9gc3exHP3wxkEwPgAAUGWqovWanLA69lg1mieXYo0WaL0LjXa0F/RXviEAAFSBCu/XG6lQWzWLRltFX9I5T+tlenidLvzIGEDrAQCHgfxzOI5ar5VfEVudOC5Lar2qH9tyrJu4i1VdPwAAcCBU/fl6o+TZCqJ1lUCUjZa2/bwNbe15CVvX8gZBMDjV8gMAANUH780CAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3sb43y3v+HU+Cl6ip0RDsHdU8K9zR1T1OavCok8/HxfsTR1jvUQ2y4CWVWtv1XsCk9Zrl7dMCGHojVRmNqoyncWfxZo47hzKWlWwumUblDqt43Komo3pucBGiclwUdUBxTT3QnCrDe2/WZIZxry5V18RqIemQZ1ZrdR3tcetC6w+TgAGlTQ4orrFHNTHgjKrW2557VQXCtInxo6R/201U/QQsSJYgyEfViWS9YleSeQqKVRoHx/ytiR1oXbx+xzx5nfL5i+uqsF7VfAT1qoYWWMqPp2pcU7FK3oAzSlpvOuyMlpI7hreJdTfLGFvj2vpxTMAaTr4KcT6SHtz5CZTjOs9q5a9V6ThxrEs+f9VxNuVs2lYyHxl7q5k4ou3A8patZo7RHc0ExoLxVHLlLn8gi4t7ONbjz/YwtUV8mJr2seMxbc3W1o81VWshvMIdq+D1qHqwTdidH95aF+OpGpc3vLbj79o/bz9K+hFsa/Rs3ZbXw6tLsliBpW0+vPyNBvLR5ZPkGUvuC0dXppFUSgw4U7nWK4VzPExVjU0buvOjWg7PskIPLuaM2EwwOEo7Qj4ub3glh0Xs30XOquNclfGU9CZj6W4clIZdae+ojqeSq0ARF4kBZ6ql9S4OLKWpYjIIlGO7iXxQaznyVcgUIvCgNCCOmbjLs1r581xVqy4X+auOc1XGU9KbjKW7cbDdNaqhxcaS46kUV2lfAGVs/1aJ7aALdq3qDrZ1KDisBf5V/Wic49X6USZ/1+OgWUbVhR/JcbOt17Z222GRz992TA6oLnn/tv229jJObGsU5+NYNc9MMh9TJ++jOK6jsXUryVSV4rrIB8hyyO/NVmUXGp3gmAAAAGcOU+ureMbGyR8AABTA7+EAAID3gdYDAID3gdYDAID3gdYDAID3gdYDAID3kfn9eg3PvdQkh7NHjnC/H9XBZo2L577Bscf2XarCKuthfawP9OObuYCD3iMl/4e/61UjVis9x8P+WM8CcHI5IVp/fDMXc2haf5i4uIKuSp68uNZJ4cljCXicCrVePD0q7+dhax8oh9fPW2XttC1ZPh8ZY2tc3rLrkiuvi5e/1UAmSZm48hmK/asGtY1rKlbJGwC1guD3cHiT3PYjbwLwbGSWebjw41gOz75ypag8f2MykmZVqStQjm0JxrUu8neM7mgmMBaMg5Ird/kDUFsIruut2AqHrRyI+23d2toL0rDaC+a2alxjj4uUZIxdLFvz4ZlVty5Bvda4Svm7CC1vzMtH1ZVpJJUSA6BWqFzrxWaOk9AxqGMaMnFl0pBcpRRXyd5x2ao1PLOq1CWwdxxPyfxdhJY3Vt0vPMtAEReJAVArVEvrD2JZJg1JP0a5UbKX4aDzNyYvaVaVugT2tv0u8ncRWmwsM56qcSscQwBqAt7z9SazgAVrv629ZjflBPZKE1IwCcUpyfhRmtK8egXGtnna+uGVaVpwLEG1Lp69wI8gLu+jOK6LbCVTVYrrIh8Aagu8NwsAAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN6Hp/V4jhgAALyDrdbjnREAAPAUVq3H+4EAAOA1eL+HA60HAADvYP09nEI/tB4AALyD+G+LQ+4BAMAL4DkcAADwPtB6AADwPuJnLiH3AADgBfDeLAAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB9oPQAAeB/xbyQUbGrtWfvDyafWqtZUXnBz94ZErdV7+DiOG4YIHFdMWq+V/9RlyazWDvGDzsc4CBUGqmKeB63dtbaXDxnr9Y2twUkeInCM4f1+vcms1g7xQ9P6GvFzHKMfO8Ra73jJD0BNo6r1prVKEyBQjtW57bJgE3G/tZNXHS9VcQmO/ZL5y+SpFNexigrrOgnYjr+1H4Bjg5LWmw53o6XMHODZOy6Lw8nkY7IRpxoox3Ut1o/y9rbRJfORsZdxIsjT22AcgAdxcQ/HqkdiWRQ7kVkOCKVcJh9jj2qq1n6Tf4FD+cGUyZPXY63XMTHJbFU9eADHQT6BYwK8QOVaLx+Lp3GOy9ZwqvlUrnqSOVfixzFPgbFjIBl49qp+ji+OlZ6coQBeo1paLzMHZLSSF0jSzJ2GilN1nb9Mbkp5CowdE5ZB1b/HkKn3JIwD8Ca2f1vcds4LpEpyAjhqnEkWedJjWrD149jpmKetvW2e8pu4zjNgQT4fmcId/Tt68ACOg3aiRgN4Dbw3CwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3gdaDwAA3seq9QEDrt3ynFTFuet8DjMiAADUECatN2qijD7aGvCcqDqvLpB7AMDJxaj1JjW0/Wh7nS7wXztaf1RBAQDg6BFovQnevReZrcT9AQvWoLbnGIGxTFwAADgpyGu9AME5QEZwSx9L/4rPKI7LAj+CfgAA8CxV0XpNRVgFPVaN5l2ni88HkucMAAA4KVR4v96IjLYqabRV9CWd87QeQg8AOKHIP4fjqPVa+WW41YnjsqTWq/qxLQcAAE4QVX++3qizvLOF4Hyg2ck3T/rFai4IAQAAJwu8NwsAAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAN4HWg8AAJ7n/wMIYaCpA4G4RgAAAABJRU5ErkJggg==" alt="" />

汇编语言-求X的阶乘的更多相关文章

  1. C语言-求1-20的阶乘的和(函数的递归)

    // //  main.c //  C语言 // //  Created by wanghy on 15/9/5. //  Copyright (c) 2015年 wanghy. All rights ...

  2. 递归和非递归分别实现求n的阶乘

    思路:举例求6的阶乘,6*5*4*3*2*1.可以将5开始看成另一个整型变量n,用一个循环每次将n的值减少1,.而递归也是如此,每次调用函数的时候将变量减一就可以. 方法一:非递归 //非递归: #i ...

  3. 求N的阶乘N!中末尾0的个数

    求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...

  4. 大数问题:求n的阶乘

    题目:求100! 这看起来是一个非常简答的问题,递归解之毫无压力 int func(int n){ if(n <= 1) return 1; else return n*func(n-1); } ...

  5. 2717: 递归函数求n的阶乘

    2717: 递归函数求n的阶乘 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1329  Solved: 942[Submit][Status][Web ...

  6. 求n的阶乘!

    编写一个computer类,类中含有一个求n的阶乘的方法,将该类打包, 在另一个包中引入包,在主类中定义computer类的对象,调用求n的阶乘的方法,并输出结果 结果

  7. 题目一:编写一个类Computer,类中含有一个求n的阶乘的方法

    作业:编写一个类Computer,类中含有一个求n的阶乘的方法.将该类打包,并在另一包中的Java文件App.java中引入包,在主类中定义Computer类的对象,调用求n的阶乘的方法(n值由参数决 ...

  8. POJ 1401:Factorial 求一个数阶乘的末尾0的个数

    Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Accepted: 9349 Descri ...

  9. C语言求n的阶乘(n!)

    从键盘输入一个数,求出这个数的阶乘,即 n!. 算法思想 首先要清楚阶乘定义,所谓 n 的阶乘,就是从 1 开始乘以比前一个数大 1 的数,一直乘到 n,用公式表示就是:1×2×3×4×…×(n-2) ...

随机推荐

  1. 【如何快速的开发一个完整的 iOS 直播 app】(美颜篇)

    来源:袁峥Seemygo 链接:http://www.jianshu.com/p/4646894245ba 前言 在看这篇之前,如果您还不了解直播原理,请查看这篇文章如何快速的开发一个完整的iOS直播 ...

  2. Play on Words 欧拉通路(回路)判断

    Play on Words note:  判断一下连通性. #include <iostream> #include <cstdio> #include <cstring ...

  3. iOS 实现进度条(progress)

    #import <UIKit/UIKit.h> @interface ZSDProgressView : UIView { UIView *progressView;//进度view } ...

  4. 【Android 界面效果35】管理Fragments

    http://www.cnblogs.com/mengdd/archive/2013/01/09/2853254.html

  5. 补充:tableView优化总结

    tableView优化方式总结 (说明:一下只是我自己的小总结,会有不足,望大神指正,多谢大家了) 1 缓存 cell 的行高.目的方便第二遍访问 cell. 2 减少图片的blend 操作.包括:设 ...

  6. HTML <input> 标签的 maxlength 属性

    前端的表单,需要进行验证. 结合JS表单验证框架,写了很多前端验证的代码. 其中,有这么一个需求:用户最多只能输入10个字符. 按照惯性,肯定是会去写JS表单验证了. 实际上,根本没有必要. HTML ...

  7. 【递归】油桶问题dp

    问题 : [递归]油桶问题 题目描述 楚继光扬扬得意道:“当日华山论剑,先是他用黯然销魂掌破了我的七十二路空明拳,然后我改打降龙十八掌,却不防他伸开食指和中指,竟是六脉神剑,又胜我一筹.可见天下武学彼 ...

  8. Sharepoint 2013 系列篇(安装部署)--上篇

    前言 sharepoint的部署是按照物理拓扑图的架构来部署,按照物理拓扑图架构分为一层拓扑图架构,二层拓扑图架构,三层拓扑图架构,多层拓扑图架构. 按照分层的拓扑图部署是按照需求来划分的,一层拓扑图 ...

  9. Part 30 to 31 Talking about Interfaces in c#

    Part 30 Interfaces in c# We create interfaces using interface keyword. just like classes interfaces ...

  10. Part 59 to 60 Difference between Convert ToString and ToString,String and StringBuilder

    Part 59 Difference between Convert ToString and ToString Part 60 Difference between String and Strin ...