题目链接

题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余。

思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细。

在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数。  

在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。

若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的。

s(6)=s(2)*s(3)=3*4=12;

s(20)=s(4)*s(5)=7*6=42;

再看 s(50)= 1+2+5+10+25+50=93=3*31=s(2)*s(25),s(25)=1+5+25=31.

这在数论中叫积性函数,当gcd(a,b)=1时 s(a*b)=s(a)*s(b);

如果p是素数 : s(p^n)=1+p+p^2+...+p^n= (p^(n+1)-1) /(p-1)-----其实就是等比数列求和公式 (1)

再看本题 :

计算因子和 s(2004^X) mod 29 ,

2004=2^2 *3 *167

2004^X=4^X * 3^X *167^X

s(2004^X) ) = (s(2^2X))) * (s(3^X))) * (s(167^X))) 而 167%29=22

s(2004^X) ) = (s(2^2X))) * (s(3^X))) * (s(22^X)))

a=s(2^2X)=(2^(2X+1)-1) //根据(1)

b=s(3^X)= (3^(X+1)-1)/2 //根据(1)

c=s(22^X)= (22^(X+1)-1)/21 //根据(1)

%运算法则 

1. (a*b) %p= ( a%p) *(b%p) 乘法的

2. (a/b) %p= ( a *b^(-1)%p) 除法的

s(2004^X)=(2^(2X+1)-1)* (3^(X+1)-1)/2  *(22^(X+1)-1)/21

(a*b)/c %M= a%M* b%M  * inv(c)

c*inv(c)=1 %M    模为1的所有数  inv(c)为最小可以被c整除的

inv(2)=15,  inv(21)=18    2*15=1 mod 29, 18*21=1 mod 29

s(2004^X)=((2^(2X+1)-1)* (3^(X+1)-1)/2  *(22^(X+1)-1)/21)mod 29  =((2^(2X+1)-1)* (3^(X+1)-1)*15 *(22^(X+1)-1)*18)mod29

b^(-1)是 b的逆元素(%p)即上面的inv

2的逆元素是15  ,因为2*15=30 % 29=1 % 29

21的逆元素是18  ,因为21*18=378% 29 =1 % 29

因此

a=(powi(2,2*x+1,29)-1)% 29;

b=(powi(3,x+1,29)-1)*15 % 29;

c=(powi(22,x+1,29)-1)*18 % 29;

ans=(a*b)% 29*c % 29;

 //
#include <stdio.h>
#include <math.h>
#include <iostream> using namespace std ; int multimod(int a,int n)//乘方模
{
int res = ;
while(n)
{
if(n & )
{
res *= a ;
res %= ;
}
a *= a ;
a %= ;
n >>= ;
}
return res ;
}
int main()
{
int x ;
while(~scanf("%d",&x))
{
if(x == ) break ;
int a = (multimod(,*x+)-) ;
int b = (multimod(,x+)-)* ;
int c = (multimod(,x+)-)* ;
printf("%d\n",(a*b*c)%) ;
}
return ;
}

HDU 1452 Happy 2004(因子和的积性函数)的更多相关文章

  1. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  2. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

  3. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  4. HDU 1452 Happy 2004(因数和+费马小定理+积性函数)

    Happy 2004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  5. hdu 1452 Happy 2004

    因子和: 的因子是1,2,3,6; 6的因子和是 s(6)=1+2+3+6=12; 的因子是1,2,4,5,10,20; 20的因子和是 s(20)=1+2+4+5+10+20=42; 的因子是1,2 ...

  6. Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)

    Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...

  7. HDU1452Happy 2004(高次幂取模+积性函数+逆元)

    题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...

  8. HDU1452:Happy 2004(积性函数)(因子和)

    题意 给出\(x\),求\(2004^x\)的所有因子和 分析 \(2004=2*2*3*167\) 则\(2004^x\)=\(2^{2x}*3^x*167^x\) s[\(2004^x\)]=s[ ...

  9. 积性函数,线性筛入门 HDU - 2879

    HDU - 2879HeHe 题意:He[N]为[0,N−1]范围内有多少个数满足式子x2≡x (mod N),求HeHe[N]=He[1]×……×He[N] 我是通过打表发现的he[x]=2k,k为 ...

随机推荐

  1. 采用Service实现本地推送通知

    在android的应用层中,涉及到很多应用框架,例如:Service框架,Activity管理机制,Broadcast机制,对话框框架,标题栏框架,状态栏框架,通知机制,ActionBar框架等等. ...

  2. HttpWebResponse取不到Cookie?原来是因为被跳转了

    今天做模拟登陆的时候,发现HttpWebResponse的Cookie都为空,但是Fiddler看是有的...后来看见是302状态,才知道请求这个的时候,Response回来已经是跳转了...这样Co ...

  3. Nginx +keepalived

    Nginx +keepalived   配置高可用的Nginx 准备环境: 节点node17,node18   lftp 172.16.0.1:/pub/Sources/6.x86_64/nginx ...

  4. 【转】 (C#)利用Aspose.Cells组件导入导出excel文件

    Aspose.Cells组件可以不依赖excel来导入导出excel文件: 导入: public static System.Data.DataTable ReadExcel(String strFi ...

  5. JS一些语法

    1.解构(ES6的语法) 我个人理解就是有一个对象,对象里有几个属性,然后在定义新的变量的时候可以直接指定为和对象里属性名一样的名字,然后就可以关联到新的变量上来.下面看一个小测试例子: //解构 l ...

  6. 用PHP判断客户端是否是手机

    <?php function isMobile(){ $useragent = isset($_SERVER['HTTP_USER_AGENT'])? $_SERVER['HTTP_USER_A ...

  7. 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. Oracle 中的replace函数的应用

    replace 函数用法如下: replace('将要更改的字符串','被替换掉的字符串','替换字符串') oracle 中chr()函数 CHR() --将ASCII码转换为字符 语法CHR(nu ...

  9. c++类中的静态成员

    静态成员和非静态成员的区别: 类静态成员用static修饰,类的静态成员属于类本身,而不属于类的某个具体对象,静态成员被类的所有对象共享,因此某个对象对静态成员(数据成员)的修改对其对象是可见的.而类 ...

  10. ThinkPHP学习笔记 实例化模型的四种方法

    创建Action类   [php]   <?php   class NewObjectAction extends Action{       public function index(){ ...