1974: [Sdoi2010]auction 代码拍卖会

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit:
305  Solved: 122
[Submit][Status][Discuss]

Description

随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代码库。猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库。iPig不想把代码库给所有想要的小猪,只想给其中的一部分既关系好又肯出钱的小猪,于是他决定举行了一个超大型拍卖会。
在拍卖会上,所有的N头小猪将会按照和iPig的好感度从低到高,从左到右地在iPig面前站成一排。每个小猪身上都有9猪币(与人民币汇率不明),从最左边开始,每个小猪依次举起一块牌子,上面写上想付出的买代码库的猪币数量(1到9之间的一个整数)。大家都知道,如果自己付的钱比左边的猪少,肯定得不到梦寐以求的代码库,因此从第二只起,每只猪出的钱都大于等于左边猪出的价钱。最终出的钱最多的小猪(们)会得到iPig的代码库真传,向着保送PKU(Pig
Kingdom University)的梦想前进。
iPig对自己想到的这个点子感到十分满意,在去现场的路上,iPig就在想象拍卖会上会出现的场景,例如一共会出现多少种出价情况之类的问题,但这些问题都太简单了,iPig早已不敢兴趣了,他想要去研究更加困难的问题。iPig发现如果他从台上往下看,所有小猪举的牌子从左到右将会正好构成一个N位的整数,他现在想要挑战的问题是所有可能构成的整数中能正好被P整除的有多少个。由于答案过大,他只想要知道答案mod999911659就行了。

Input

一行:两个数N(1≤N≤10^18)、P(1≤P≤500),用一个空格分开。

Output

一行:一个数,表示答案除以999911659的余数。

Sample Input

2 3

Sample Output

15
样例解释
方案可以是:12 15 18 24 27 33
36 39 45 48 57 66 69 78 99,共15种。
数据规模
测试点 N P 测试点 N P
1 ≤1000 ≤500 6
≤10^6 ≤500
2 ≤10^18 5 7 ≤10^18 ≤120
3 ≤10^18 ≤10 8 ≤10^18 ≤500
4 ≤10^18
≤10 9 ≤10^18 ≤500
5 ≤10^18 25 10 ≤10^18 ≤500

HINT

 

Source

Sdoi2010 Contest2 Day2

Solution

数据范围和题目描述,一开始以为是数位DP,发现其实不是    折越

发现从左到右每一位不减,那么有个不错的性质,可以组成的数,拆成${1,11,111,1111....}$中取$<=8$个数组合出来

而这些数%p,最多有p种可能,那么找循环,DP,用组合数计算一下答案即可

那么方程就是$dp[i][j][k]$表示前i种可能选了j个,组合出来的数%p结果为k的方案数

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define mod 999911659
long long n;int p,a,ans;
long long dp[][][],inv[],c[][],data[],cnt[];
long long C(long long x,int y)
{
if (y>x) return ;
long long re=;
for (long long i=x-y+; i<=x; i++)
(re*=(i%mod))%=mod;
return re*inv[y]%mod;
}
void GetInv()
{
inv[]=,inv[]=;
for (int i=; i<=; i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for (int i=; i<=; i++)
inv[i]=inv[i]*inv[i-]%mod;
}
int main()
{
scanf("%lld%d",&n,&p);
GetInv();
int x=%p,sz=;
while (!cnt[x]) {cnt[x]=++sz; data[sz]=x; if (sz>=n) break; x=(x*+)%p;}
if (sz!=n)
{
long long N=n-cnt[x]+; int SZ=sz-cnt[x]+;
if (SZ>) a=(p-data[cnt[x]+(N%SZ?N%SZ:SZ)-])%p;
else a=(p-data[cnt[x]])%p;
for (int i=,t=cnt[x]; i<p; i++)
if (cnt[i])
if (cnt[i]<t) cnt[i]=;
else
if (SZ> && (N%SZ)>cnt[i]-t)
cnt[i]=N/SZ+; else cnt[i]=N/SZ;
}
else
{
a=(p-x)%p;
for (int i=; i<p; i++) if (cnt[i]) cnt[i]=;
}
for (int i=; i<p; i++)
for (int j=; j<; j++)
if (cnt[i]) c[i][j]=C(cnt[i]+j-,j);
dp[][][]=;
int now=;
for (int i=; i<p; i++)
if (cnt[i])
{
now^=;
for (int j=; j<; j++)
for (int k=; k<p; k++)
dp[now][j][k]=dp[now^][j][k];
for (int j=; j<; j++)
for (int k=; k<p; k++)
if (dp[now^][j][k])
for (int l=; l<-j; l++)
(dp[now][j+l][(k+l*i)%p]+=dp[now^][j][k]*c[i][l]%mod)%=mod;
}
for (int i=; i<; i++)
ans=(ans+dp[now][i][a])%mod;
printf("%d\n",ans);
return ;
}

这道题吼啊!

【BZOJ-1974】auction代码拍卖会 DP + 排列组合的更多相关文章

  1. BZOJ 1974: [Sdoi2010]auction 代码拍卖会( dp )

    在1, 11, 111……中选<=8个, + 11..(n个1)拼出所有可能...这些数mod p至多有p中可能, 找出循环的处理一下. 那么dp就很显然了...dp(i, j, k)表示前i种 ...

  2. bzoj 1974: [Sdoi2010]代码拍卖会

    Description 随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代 码库.猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库.iPi g不想把代码库给所有想要的小猪,只想 ...

  3. Luogu2481 SDOI2010 代码拍卖会 DP、组合

    传送门 神仙DP 注意到\(N \leq 10^{18}\),不能够直接数位DP,于是考虑形成的\(N\)位数的性质. 因为低位一定不会比高位小,所以所有满足条件的\(N\)位数一定是不超过\(9\) ...

  4. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  5. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

  6. G.subsequence 1(dp + 排列组合)

    subsequence 1 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 You are ...

  7. bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...

  8. LightOJ1005 Rooks(DP/排列组合)

    题目是在n*n的棋盘上放k个车使其不互相攻击的方案数. 首先可以明确的是n*n最多只能合法地放n个车,即每一行都指派一个列去放车. dp[i][j]表示棋盘前i行总共放了j个车的方案数 dp[0][0 ...

  9. HDU 5816 状压DP&排列组合

    ---恢复内容开始--- Hearthstone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

随机推荐

  1. 关于MyBatis mapper的insert, update, delete返回值

    这里做了比较清晰的解释: http://mybatis.github.io/mybatis-3/java-api.html SqlSession As mentioned above, the Sql ...

  2. 在PHP中无法连接Memcached的解决办法

    Memcached 已经正确安装配置, 并且防火墙也已经打开了本机对自己所有端口的访问, telnet localhost 11211也正常, 但是通过PHP访问出现 [Sat May 17 22:0 ...

  3. IO调度器(二) IO的中断返回

    IO的中断返回也是相当让人激动的一件事情: 28470  1)               |        handle_irq() { 28471  1)   0.237 us    |      ...

  4. POJ 3714 Raid

    Description After successive failures in the battles against the Union, the Empire retreated to its ...

  5. Web服务器父与子 Apache和Tomcat区别

    http://developer.51cto.com/art/201007/210894.htm 熟悉三国的朋友都知道曹操,曹操有二十五个儿子,其中最得曹操宠爱的是曹丕.曹植.曹彰三个,曹丕性格阴冷, ...

  6. [转]Class 'Think\Log' not found

    转自:http://www.thinkphp.cn/topic/26815.html 解决偶尔出现 Class 'Think\Log' not found 的奇葩问题(并非每次必现,偶尔删除缓存可以解 ...

  7. Could not load file or assembly 'System.Data.SQLite' or one of its dependencies

    试图加载格式不正确的程 异常类型 异常消息Could not load file or assembly 'System.Data.SQLite' or one of its dependencies ...

  8. C#并行编程中的Parallel.Invoke

    一.基础知识 并行编程:并行编程是指软件开发的代码,它能在同一时间执行多个计算任务,提高执行效率和性能一种编程方式,属于多线程编程范畴.所以我们在设计过程中一般会将很多任务划分成若干个互相独立子任务, ...

  9. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  10. CUDA2.3-原理之任意长度的矢量求和与用事件来测量性能

    __global__ void add( int *a, int *b, int *c) { <span style="white-space:pre"> </s ...