【BZOJ-1974】auction代码拍卖会 DP + 排列组合
1974: [Sdoi2010]auction 代码拍卖会
Time Limit: 10 Sec Memory Limit: 64 MB
Submit:
305 Solved: 122
[Submit][Status][Discuss]
Description
随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代码库。猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库。iPig不想把代码库给所有想要的小猪,只想给其中的一部分既关系好又肯出钱的小猪,于是他决定举行了一个超大型拍卖会。
在拍卖会上,所有的N头小猪将会按照和iPig的好感度从低到高,从左到右地在iPig面前站成一排。每个小猪身上都有9猪币(与人民币汇率不明),从最左边开始,每个小猪依次举起一块牌子,上面写上想付出的买代码库的猪币数量(1到9之间的一个整数)。大家都知道,如果自己付的钱比左边的猪少,肯定得不到梦寐以求的代码库,因此从第二只起,每只猪出的钱都大于等于左边猪出的价钱。最终出的钱最多的小猪(们)会得到iPig的代码库真传,向着保送PKU(Pig
Kingdom University)的梦想前进。
iPig对自己想到的这个点子感到十分满意,在去现场的路上,iPig就在想象拍卖会上会出现的场景,例如一共会出现多少种出价情况之类的问题,但这些问题都太简单了,iPig早已不敢兴趣了,他想要去研究更加困难的问题。iPig发现如果他从台上往下看,所有小猪举的牌子从左到右将会正好构成一个N位的整数,他现在想要挑战的问题是所有可能构成的整数中能正好被P整除的有多少个。由于答案过大,他只想要知道答案mod999911659就行了。
Input
一行:两个数N(1≤N≤10^18)、P(1≤P≤500),用一个空格分开。
Output
一行:一个数,表示答案除以999911659的余数。
Sample Input
Sample Output
样例解释
方案可以是:12 15 18 24 27 33
36 39 45 48 57 66 69 78 99,共15种。
数据规模
测试点 N P 测试点 N P
1 ≤1000 ≤500 6
≤10^6 ≤500
2 ≤10^18 5 7 ≤10^18 ≤120
3 ≤10^18 ≤10 8 ≤10^18 ≤500
4 ≤10^18
≤10 9 ≤10^18 ≤500
5 ≤10^18 25 10 ≤10^18 ≤500
HINT
Source
Solution
数据范围和题目描述,一开始以为是数位DP,发现其实不是 折越
发现从左到右每一位不减,那么有个不错的性质,可以组成的数,拆成${1,11,111,1111....}$中取$<=8$个数组合出来
而这些数%p,最多有p种可能,那么找循环,DP,用组合数计算一下答案即可
那么方程就是$dp[i][j][k]$表示前i种可能选了j个,组合出来的数%p结果为k的方案数
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define mod 999911659
long long n;int p,a,ans;
long long dp[][][],inv[],c[][],data[],cnt[];
long long C(long long x,int y)
{
if (y>x) return ;
long long re=;
for (long long i=x-y+; i<=x; i++)
(re*=(i%mod))%=mod;
return re*inv[y]%mod;
}
void GetInv()
{
inv[]=,inv[]=;
for (int i=; i<=; i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for (int i=; i<=; i++)
inv[i]=inv[i]*inv[i-]%mod;
}
int main()
{
scanf("%lld%d",&n,&p);
GetInv();
int x=%p,sz=;
while (!cnt[x]) {cnt[x]=++sz; data[sz]=x; if (sz>=n) break; x=(x*+)%p;}
if (sz!=n)
{
long long N=n-cnt[x]+; int SZ=sz-cnt[x]+;
if (SZ>) a=(p-data[cnt[x]+(N%SZ?N%SZ:SZ)-])%p;
else a=(p-data[cnt[x]])%p;
for (int i=,t=cnt[x]; i<p; i++)
if (cnt[i])
if (cnt[i]<t) cnt[i]=;
else
if (SZ> && (N%SZ)>cnt[i]-t)
cnt[i]=N/SZ+; else cnt[i]=N/SZ;
}
else
{
a=(p-x)%p;
for (int i=; i<p; i++) if (cnt[i]) cnt[i]=;
}
for (int i=; i<p; i++)
for (int j=; j<; j++)
if (cnt[i]) c[i][j]=C(cnt[i]+j-,j);
dp[][][]=;
int now=;
for (int i=; i<p; i++)
if (cnt[i])
{
now^=;
for (int j=; j<; j++)
for (int k=; k<p; k++)
dp[now][j][k]=dp[now^][j][k];
for (int j=; j<; j++)
for (int k=; k<p; k++)
if (dp[now^][j][k])
for (int l=; l<-j; l++)
(dp[now][j+l][(k+l*i)%p]+=dp[now^][j][k]*c[i][l]%mod)%=mod;
}
for (int i=; i<; i++)
ans=(ans+dp[now][i][a])%mod;
printf("%d\n",ans);
return ;
}
这道题吼啊!
【BZOJ-1974】auction代码拍卖会 DP + 排列组合的更多相关文章
- BZOJ 1974: [Sdoi2010]auction 代码拍卖会( dp )
在1, 11, 111……中选<=8个, + 11..(n个1)拼出所有可能...这些数mod p至多有p中可能, 找出循环的处理一下. 那么dp就很显然了...dp(i, j, k)表示前i种 ...
- bzoj 1974: [Sdoi2010]代码拍卖会
Description 随着iPig在P++语言上的造诣日益提升,他形成了自己一套完整的代 码库.猪王国想参加POI的童鞋们都争先恐后问iPig索要代码库.iPi g不想把代码库给所有想要的小猪,只想 ...
- Luogu2481 SDOI2010 代码拍卖会 DP、组合
传送门 神仙DP 注意到\(N \leq 10^{18}\),不能够直接数位DP,于是考虑形成的\(N\)位数的性质. 因为低位一定不会比高位小,所以所有满足条件的\(N\)位数一定是不超过\(9\) ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- G.subsequence 1(dp + 排列组合)
subsequence 1 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 You are ...
- bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...
- LightOJ1005 Rooks(DP/排列组合)
题目是在n*n的棋盘上放k个车使其不互相攻击的方案数. 首先可以明确的是n*n最多只能合法地放n个车,即每一行都指派一个列去放车. dp[i][j]表示棋盘前i行总共放了j个车的方案数 dp[0][0 ...
- HDU 5816 状压DP&排列组合
---恢复内容开始--- Hearthstone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java ...
随机推荐
- 阴影效果css
http://www.cssreflex.com/css-generators/ http://blog.csdn.net/freshlover/article/details/7610269 css ...
- 处理OSX创建的U盘, 删除EFI分区
1. 运行 diskpart 2. list disk 3. 根据列出的硬盘, select disk [编号] 4. clean 5. exit 然后再创建分区和格式化
- [转]考虑 PHP 5.0~5.6 各版本兼容性的 cURL 文件上传
FROM : https://segmentfault.com/a/1190000000725185 最近做的一个需求,要通过PHP调用cURL,以multipart/form-data格式上传文件. ...
- 浅谈设计模式--组合模式(Composite Pattern)
组合模式(Composite Pattern) 组合模式,有时候又叫部分-整体结构(part-whole hierarchy),使得用户对单个对象和对一组对象的使用具有一致性.简单来说,就是可以像使用 ...
- FineUI v4.0.3 (beta) 和 FineUI v3.3.3 发布了!
关于FineUI基于 ExtJS 的开源 ASP.NET 控件库 FineUI的使命创建 No JavaScript,No CSS,No UpdatePanel,No ViewState,No Web ...
- Java 基础【09】 日期类型
java api中日期类型的继承关系 java.lang.Object --java.util.Date --java.sql.Date --java.sql.Time --java.sql.Time ...
- 我所认识的javascript正则表达式
前言 如果说这是一篇关于正则表达式的小结,我更愿意把它当做一个手册. 目录:(点击可直达) RegExp 三大方法(test.exec.compile) String 四大护法(search.matc ...
- JQuery fullCalendar 时间差 排序获取距当前最近的时间。
let time = (wo: WoDto) => wo.ScheduleTime || wo.ScheduleStartTime; let wo = technician.wos .filte ...
- [转]Linux系统中‘dmesg’命令处理故障和收集系统信息的7种用法
'dmesg'命令显示linux内核的环形缓冲区信息,我们可以从中获得诸如系统架构.cpu.挂载的硬件,RAM等多个运行级别的大量的系统信息.当计算机启动时,系统内核(操作系统的核心部分)将会被加载到 ...
- Bootstrap系列 -- 5. 文本对齐方式
一. 文本对齐样式 .text-left:左对齐 .text-center:居中对齐 .text-right:右对齐 .text-justify:两端对齐 二. 使用方式 <p class=&q ...