void SkinRGB(IplImage* rgb, IplImage* _dst)
{
assert(rgb->nChannels == && _dst->nChannels == ); static const int R = ;
static const int G = ;
static const int B = ; IplImage* dst = cvCreateImage(cvGetSize(_dst), , );
cvZero(dst); for (int h = ; h<rgb->height; h++)
{
unsigned char* prgb = (unsigned char*)rgb->imageData + h*rgb->widthStep;
unsigned char* pdst = (unsigned char*)dst->imageData + h*dst->widthStep;
for (int w = ; w<rgb->width; w++)
{
if ((prgb[R]> && prgb[G]> && prgb[B]> &&
prgb[R] - prgb[B]> && prgb[R] - prgb[G]>) ||//uniform illumination
(prgb[R]> && prgb[G]> && prgb[B]> &&
abs(prgb[R] - prgb[B]) <= && prgb[R]>prgb[B] && prgb[G]>prgb[B])//lateral illumination
)
{
memcpy(pdst, prgb, );
}
prgb += ;
pdst += ;
}
}
cvCopy(dst, _dst);
cvReleaseImage(&dst);
}
// skin detection in rg space
void cvSkinRG(IplImage* rgb, IplImage* gray)
{
assert(rgb->nChannels == && gray->nChannels == ); const int R = ;
const int G = ;
const int B = ; double Aup = -1.8423;
double Bup = 1.5294;
double Cup = 0.0422;
double Adown = -0.7279;
double Bdown = 0.6066;
double Cdown = 0.1766;
for (int h = ; h<rgb->height; h++)
{
unsigned char* pGray = (unsigned char*)gray->imageData + h*gray->widthStep;
unsigned char* pRGB = (unsigned char*)rgb->imageData + h*rgb->widthStep;
for (int w = ; w<rgb->width; w++)
{
int s = pRGB[R] + pRGB[G] + pRGB[B];
double r = (double)pRGB[R] / s;
double g = (double)pRGB[G] / s;
double Gup = Aup*r*r + Bup*r + Cup;
double Gdown = Adown*r*r + Bdown*r + Cdown;
double Wr = (r - 0.33)*(r - 0.33) + (g - 0.33)*(g - 0.33);
if (g<Gup && g>Gdown && Wr>0.004)
{
*pGray = ;
}
else
{
*pGray = ;
}
pGray++;
pRGB += ;
}
} }
// implementation of otsu algorithm
// author: onezeros#yahoo.cn
// reference: Rafael C. Gonzalez. Digital Image Processing Using MATLAB
void cvThresholdOtsu(IplImage* src, IplImage* dst)
{
int height = src->height;
int width = src->width; //histogram
float histogram[] = { };
for (int i = ; i<height; i++)
{
unsigned char* p = (unsigned char*)src->imageData + src->widthStep*i;
for (int j = ; j<width; j++)
{
histogram[*p++]++;
}
}
//normalize histogram
int size = height*width;
for (int i = ; i<; i++)
{
histogram[i] = histogram[i] / size;
} //average pixel value
float avgValue = ;
for (int i = ; i<; i++)
{
avgValue += i*histogram[i];
} int threshold;
float maxVariance = ;
float w = , u = ;
for (int i = ; i<; i++)
{
w += histogram[i];
u += i*histogram[i]; float t = avgValue*w - u;
float variance = t*t / (w*( - w));
if (variance>maxVariance)
{
maxVariance = variance;
threshold = i;
}
} cvThreshold(src, dst, threshold, , CV_THRESH_BINARY);
} void cvSkinOtsu(IplImage* src, IplImage* dst)
{
assert(dst->nChannels == && src->nChannels == ); IplImage* ycrcb = cvCreateImage(cvGetSize(src), , );
IplImage* cr = cvCreateImage(cvGetSize(src), , );
cvCvtColor(src, ycrcb, CV_BGR2YCrCb);
cvSplit(ycrcb, , cr, , ); cvThresholdOtsu(cr, cr);
cvCopy(cr, dst);
cvReleaseImage(&cr);
cvReleaseImage(&ycrcb);
} void cvSkinYUV(IplImage* src, IplImage* dst)
{
IplImage* ycrcb = cvCreateImage(cvGetSize(src), , );
//IplImage* cr=cvCreateImage(cvGetSize(src),8,1);
//IplImage* cb=cvCreateImage(cvGetSize(src),8,1);
cvCvtColor(src, ycrcb, CV_BGR2YCrCb);
//cvSplit(ycrcb,0,cr,cb,0); static const int Cb = ;
static const int Cr = ;
static const int Y = ; //IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3);
cvZero(dst); for (int h = ; h<src->height; h++)
{
unsigned char* pycrcb = (unsigned char*)ycrcb->imageData + h*ycrcb->widthStep;
unsigned char* psrc = (unsigned char*)src->imageData + h*src->widthStep;
unsigned char* pdst = (unsigned char*)dst->imageData + h*dst->widthStep;
for (int w = ; w<src->width; w++)
{
if (pycrcb[Cr] >= && pycrcb[Cr] <= && pycrcb[Cb] >= && pycrcb[Cb] <= )
{
memcpy(pdst, psrc, );
}
pycrcb += ;
psrc += ;
pdst += ;
}
}
//cvCopyImage(dst,_dst);
//cvReleaseImage(&dst);
} void cvSkinHSV(IplImage* src, IplImage* dst)
{
IplImage* hsv = cvCreateImage(cvGetSize(src), , );
//IplImage* cr=cvCreateImage(cvGetSize(src),8,1);
//IplImage* cb=cvCreateImage(cvGetSize(src),8,1);
cvCvtColor(src, hsv, CV_BGR2HSV);
//cvSplit(ycrcb,0,cr,cb,0); static const int V = ;
static const int S = ;
static const int H = ; //IplImage* dst=cvCreateImage(cvGetSize(_dst),8,3);
cvZero(dst); for (int h = ; h<src->height; h++)
{
unsigned char* phsv = (unsigned char*)hsv->imageData + h*hsv->widthStep;
unsigned char* psrc = (unsigned char*)src->imageData + h*src->widthStep;
unsigned char* pdst = (unsigned char*)dst->imageData + h*dst->widthStep;
for (int w = ; w<src->width; w++)
{
if (phsv[H] >= && phsv[H] <= )
{
memcpy(pdst, psrc, );
}
phsv += ;
psrc += ;
pdst += ;
}
}
//cvCopyImage(dst,_dst);
//cvReleaseImage(&dst);
} int main()
{ //IplImage* img = cvLoadImage("C:\\C_C++ code\\Photo and video\\text009.jpg"); //随便放一张jpg图片在D盘或另行设置目录
//IplImage* dstRGB = cvCreateImage(cvGetSize(img), 8, 3);
//IplImage* dstRG = cvCreateImage(cvGetSize(img), 8, 1); //IplImage* dst_YUV = cvCreateImage(cvGetSize(img), 8, 3);
//IplImage* dst_HSV = cvCreateImage(cvGetSize(img), 8, 3); cvNamedWindow("inputimage", CV_WINDOW_AUTOSIZE);
cvShowImage("inputimage", img);
cvWaitKey();
SkinRGB(img, dstRGB);
cvNamedWindow("SkinRGB", CV_WINDOW_AUTOSIZE);
cvShowImage("SkinRGB", dstRGB);
cvWaitKey();
cvSkinRG(img, dstRG);
cvNamedWindow("cvSkinRG", CV_WINDOW_AUTOSIZE);
cvShowImage("cvSkinRG", dstRG);
cvWaitKey();
cvSkinOtsu(img, dst_crotsu);
cvNamedWindow("cvSkinOtsu", CV_WINDOW_AUTOSIZE);
cvShowImage("cvSkinOtsu", dst_crotsu);
cvWaitKey();
cvSkinYUV(img, dst_YUV);
cvNamedWindow("cvSkinYUV", CV_WINDOW_AUTOSIZE);
cvShowImage("cvSkinYUV", dst_YUV);
cvWaitKey();
cvSkinHSV(img, dst_HSV);
cvNamedWindow("cvSkinHSV", CV_WINDOW_AUTOSIZE);
cvShowImage("cvSkinHSV", dst_HSV);
cvWaitKey(); IplImage *src;
//VideoCapture video("C:\\C_C++ EX8 code\\Video\\MyVideo.wmv");
VideoCapture video();
if (!video.isOpened())
{
return -;
}
cv::Mat img, dstimg;
cv::Rect rect(, , , );
video >> img;
src = &(IplImage(img));
IplImage* dst_crotsu = cvCreateImage(cvGetSize(src), , );
while ()
{
video >> img;
src = &(IplImage(img));
cvSkinOtsu(src, dst_crotsu);
cvNamedWindow("cvSkinOtsu", CV_WINDOW_AUTOSIZE); Mat output = cvarrToMat(dst_crotsu);
cv::erode(output, output, cv::Mat());
cv::erode(output, output, cv::Mat());
cv::erode(output, output, cv::Mat());
cv::erode(output, output, cv::Mat());
cv::dilate(output, output, cv::Mat()); imshow("cvSkinOtsu", output); if (cv::waitKey() > )
{
break;
}
} cvWaitKey();
return ;
}

Opencv SkinOtsu皮肤检测的更多相关文章

  1. OpenCV探索之路(二十七):皮肤检测技术

    好久没写博客了,因为最近都忙着赶项目和打比赛==| 好吧,今天我打算写一篇关于使用opencv做皮肤检测的技术总结.那首先列一些现在主流的皮肤检测的方法都有哪些: RGB color space Yc ...

  2. OpenCV颜色转换和皮肤检测

    本笔记重点记录OpenCV中的颜色转换和利用色彩空间的特性进行皮肤检测 颜色转换 实现原理 之所以要引入色调/饱和度/亮度的色彩空间概念,是因为人们喜欢凭直觉分辨各种颜色,而它与这种方式吻合.实际上, ...

  3. OpenCv皮肤检测-HSV分离

    HSV皮肤检测 // 进行肤色检测 void SkinDetect(IplImage* src, IplImage* dst) { // 创建图像头 IplImage* hsv = cvCreateI ...

  4. OpenCV特征点检测------ORB特征

    OpenCV特征点检测------ORB特征 ORB是是ORiented Brief的简称.ORB的描述在下面文章中: Ethan Rublee and Vincent Rabaud and Kurt ...

  5. OpenCv椭圆皮肤模型

    Mat input_image; Mat output_mask; Mat output_image; void main() { VideoCapture cam(); if (!cam.isOpe ...

  6. opencv车道线检测

    opencv车道线检测 完成的功能 图像裁剪:通过设定图像ROI区域,拷贝图像获得裁剪图像 反透视变换:用的是老师给的视频,没有对应的变换矩阵.所以建立二维坐标,通过四点映射的方法计算矩阵,进行反透视 ...

  7. 【转载】opencv实现人脸检测

    全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article ...

  8. [PyImageSearch] Ubuntu16.04 使用深度学习和OpenCV实现物体检测

    上一篇博文中讲到如何用OpenCV实现物体分类,但是接下来这篇博文将会告诉你图片中物体的位置具体在哪里. 我们将会知道如何使用OpenCV‘s的dnn模块去加载一个预训练的物体检测网络,它能使得我们将 ...

  9. 【python+opencv】直线检测+圆检测

     Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...

随机推荐

  1. UINT数相减

    UINT32 i = ; UINT32 j = ; i - j > //这个将永远为真,因为他是将将结果按照无符号解析 int = i -j; //这个是-1,是按照有符号解析 今天发现代码里面 ...

  2. java 类的静态变量

    主要是记录一个奇葩的现象,java类中的静态变量,不仅可以通过类名称直接调用,而且还可以通过类的实力对象调用,java是不存在静态类的,如果非要用静态的类那就是内部类. 类中的静态变量是存储在JVM方 ...

  3. 10月20日MySQL数据库作业解析

    设有一数据库,包括四个表:学生表(Student).课程表(Course).成绩表(Score)以及教师信息表(Teacher).四个表的结构分别如表1-1的表(一)~表(四)所示,数据如表1-2的表 ...

  4. Java 生成验证码图片

    生成验证码图片并对提交的输入进行验证 // HttpServletResponse常见应用——生成验证码 // 利用BufferedImage类生产随机图片 public static final i ...

  5. 2015 前端[JS]工程师必知必会

    2015 前端[JS]工程师必知必会 本文摘自:http://zhuanlan.zhihu.com/FrontendMagazine/20002850 ,因为好东东西暂时没看懂,所以暂时保留下来,供以 ...

  6. AOP PostSharp

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using PostShar ...

  7. Yii2 rules验证规则

    Rules验证规则:  required : 必须值验证属性||CRequiredValidator 的别名, 确保了特性不为空. [['字段名1','字段名2'],required]    //字段 ...

  8. servlet request getHeader(“x-forwarded-for”) 获取真实IP

    request方法客户端IP: request.getRemoteAddr() 输出:192.168.0.106 客户端主机名:request.getRemoteHost()输出:abc reques ...

  9. [Ljava.lang.String和java.lang.String区别

    在做项目时报了一个got class [Ljava.lang.String的提示,当时看到[Ljava.lang.String这个时,感觉有点怪怪的,第一次遇到这种情况.最后在网上查了下才明白.是数组 ...

  10. SVN使用教程总结[转]

    SVN使用教程总结   SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成很多不同的版本,这就需要程序员有效的管理代码,在需要的时候可以迅速,准确取出相应的版本. Sub ...