Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

题目大意:给k个线性同余方程,求这些方程的公共解。

附思路:http://blog.csdn.net/orpinex/article/details/6972654

思路:考虑两个方程的情况

ans = r1(mod a1)
ans = r2(mod a2)①
存在k1使得ans = r1 + k1 * a1
把ans代入①得:r1 + k1 * a1 = r2(mod a2)
k1 * a1 = r2 - r1(mod a2)
存在k2使得k1 * a1 - k2 * a2 = r2 - r1
利用拓展欧几里得求出k1(为了得到最小的非负整数k1,可以让k1 = k1 mod (a2/gcd(a1, a2)))

那么令ans = r1 + k1 * a1

对于多个方程的情况,两个两个地联立解,new_r = ans = r1 + k1 * a1, new_a = lcm(a1, a2)

解析:

关于为了让k1最小要k1 = k1 mod (a2/gcd(a1, a2))。令d = gcd(a1, a2),a1'= a1 / d,a2' = a2 / d ,r' = (r2 - r1) / d,对方程k1 * a1 - k2 * a2 = r2 - r1,两边同时除以d得k1 * a1' - k2 * a2' = r',即k1 * a1' = r' (mod a2'),对于任意解k1 = x',有通解x = x' + a2' = x' + a2 / gcd(a1, a2)。则最小的k1 = (x' + a2 / gcd(a1, a2)) mod (a2 / gcd(a1, a2) = x' mod (a2 / gcd(a1, a2))

关于new_a = lcm(a1, a2)。考虑方程x * a = y * b,两边同时除以gcd(a, b),得到x * a' = y * b',x / y = b' / a',那么有x = kb',y = ka',k∈Z。那么使得方程x * a = y * b成立的x * a = k * b' * a = k * lcm(a, b)。容易想象,p + ax = q + by的每个合理的p + ax的差为lcm(a, b)。即对于方程r1(mod a1) = r2(mod a2)的解也是隔lcm(a1, a2)就出现一个解,即new_a = lcm(a1, a2)。

代码(16MS):

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL; void exgcd(LL a, LL b, LL &d, LL &x, LL &y) {
if(!b) d = a, x = , y = ;
else {
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main() {
LL k, a1, a2, r1, r2;
while(scanf("%I64d", &k) != EOF) {
bool flag = true;
scanf("%I64d%I64d", &a1, &r1);
for(int i = ; i < k; ++i) {
scanf("%I64d%I64d", &a2, &r2);
if(!flag) continue;
LL r = r2 - r1, d, k1, k2;
exgcd(a1, a2, d, k1, k2);
if(r % d) flag = false;
LL t = a2 / d;
k1 = (r / d * k1 % t + t) % t;
r1 = r1 + a1 * k1;
a1 = a1 / d * a2;
}
printf("%I64d\n", flag ? r1 : -);
}
}

POJ 2891 Strange Way to Express Integers(拓展欧几里得)的更多相关文章

  1. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  2. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  3. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  4. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  5. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  6. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

  7. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

  8. POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】

    求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...

  9. POJ 2891 Strange Way to Express Integers(中国剩余定理)

    题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cma ...

随机推荐

  1. python 教程

    教程 http://www.runoob.com/python/att-list-append.html 习题 http://blog.csdn.net/liuyuan_jq/article/deta ...

  2. 全浏览器收藏网站javascript

    function MyFavorite(sURL, sTitle) { var ctrl = (navigator.userAgent.toLowerCase()).indexOf('mac') != ...

  3. 【Go语言】错误与异常处理机制

    ①error接口 Go语言中的error类型实际上是抽象了Error()方法的error接口 type error interface { Error() string } Go语言使用该接口进行标准 ...

  4. C程序编译过程

    1.1程序被其他程序翻译成不同的格式 1.hello.c #include <stdio.h> int main() { printf("hello world\n") ...

  5. thinkphp类的调用

    1.在controller下新建一个类,类的名称必须按照tp的规范来写. 2.在需要调用的类中,只需new一下被调用的类名. $t=new DataController(); $t->m();

  6. CSS3初学篇章_1

    CSS 层叠样式表 不同的浏览器需要不同的前缀,虽然目前最新版本的浏览器的不需要,但为了向下兼容,前缀还是少不了. 前缀 浏览器  -webkit  chrome和safari  -moz  fire ...

  7. 演示一个OLS进行数据访问控制的示例

    1.确认数据库版本 2.安装OLS组件 3.创建策略 4.创建分级和标签 5.创建测试用户并授权 6.更新标签 7.测试演示

  8. 采用Hibernate框架的研发平台如何能够真正兼容Oracle和sqlServer数据库

    都说Hibernate框架的使用可以很容易的让你的研发平台支持多种不同类型的数据库,但实践表明,这里的“容易”,是相对的. 想让研发平台支持多种数据库,并不是一件简单的事,也可以这么说:并不是只要使用 ...

  9. IP地址的分类与寻址

    IP地址:有一种标识符,被TCP/IP协议簇的IP层用来标识 连接到因特网的设备.IP协议的第4版IPv4地址是32位地址,是连接地址,定义了每一个连接到因特网上的设备(可以认为是主机的别名),而不是 ...

  10. Maven入门系列(二)--设置中央仓库的方法

    原文地址:http://www.codeweblog.com/maven入门系列-二-设置中央仓库的方法/ Maven仓库放在我的文档里好吗?当然不好,重装一次电脑,意味着一切jar都要重新下载和发布 ...