ACM Minimum Inversion Number 解题报告 -线段树
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
Output
Sample Input
Sample Output
//线段树专题解题。
//其实一开始没想通,后来手动模拟了一下整个树建立的过程就全部清楚了。
//详细AC代码在下面:
#include"iostream"
#include"algorithm"
#include"cstdio"
#include"cstring"
#include"cmath"
#define max(a,b) a>b?a:b
#define min(a,b) a<b?a:b
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MX = +;
int sum[MX<<];
void PushUp(int rt) {
sum[rt]=sum[rt<<]+sum[rt<<|]; //更新节点 父节点为子节点之和
} void Build(int l,int r,int rt) {
sum[rt]=; //建立一棵空树 【这里之前放在了判断里面,叶节点确实清空了,枝节点漏掉了】
if(r==l) return ;
int m=(r+l)>>;
Build(lson);//建立左节点
Build(rson);//建立右节点
} void UpData(int p,int l,int r,int rt) {
if(r==l) { //找到并更新目标点
sum[rt]++;
return ;
}
int m=(r+l)>>;
if(p<=m) UpData(p,lson); //如果不是目标点向左右寻找
if(p >m) UpData(p,rson);
PushUp(rt);//将更新过的每个点的子节点的和更新。
} int Query(int L,int R,int l,int r,int rt) {
if(L<=l&&R>=r) //大小超过整个范围
return sum[rt]; //返回总数
int m=(r+l)>>;
int ret=;
if(L<= m) ret += Query(L,R,lson); //比x[i]大的树的左值和
if(R > m) ret += Query(L,R,rson); //比x[i]大的树的右值和
return ret;
}
int x[MX];
int main() {
int n;
int sums;
char s[];
while(~scanf("%d",&n)) {
sums=;
Build(,n-,); //【这里应该从0~n-1比较好,从1~n的话0的位置不好放在哪里了。后面也就一样了。】
for(int i=; i<n; i++) {
scanf("%d",&x[i]);
sums+=Query(x[i],n-,,n-,);
UpData(x[i],,n-,);
}
int ret=sums;
for(int i=; i<n; i++) {
sums=sums+n-*x[i]-;
ret=min(ret,sums);
}
printf("%d\n",ret);
}
return ;
}
ACM Minimum Inversion Number 解题报告 -线段树的更多相关文章
- ACM: Just a Hook 解题报告 -线段树
E - Just a Hook Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u D ...
- ACM: 敌兵布阵 解题报告 -线段树
敌兵布阵 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description Li ...
- Hdu P1394 Minimum Inversion Number | 权值线段树
题目链接 题目翻译: 约定数字序列a1,a2,...,an的反转数是满足i<j和ai>aj的数对(ai,aj)的数量. 对于给定的数字序列a1,a2,...,an,如果我们将第1到m个数字 ...
- ACM: I Hate It 解题报告 - 线段树
I Hate It Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Des ...
- HDU 1394 Minimum Inversion Number (数据结构-段树)
Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- ACM: Billboard 解题报告-线段树
Billboard Time Limit:8000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Descript ...
- ACM: Hotel 解题报告 - 线段树-区间合并
Hotel Time Limit:3000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu Description The ...
- [P3097] [USACO13DEC] [BZOJ4094] 最优挤奶Optimal Milking 解题报告(线段树+DP)
题目链接:https://www.luogu.org/problemnew/show/P3097#sub 题目描述 Farmer John has recently purchased a new b ...
- [jzoj 5662] 尺树寸泓 解题报告 (线段树+中序遍历)
interlinkage: https://jzoj.net/senior/#contest/show/2703/1 description: solution: 发现$dfs$序不好维护 注意到这是 ...
随机推荐
- eclipse中的任务标记(TODO、FIXME、XXX)
eclipse Task Tags: TODO -用来提醒该标识处的代码有待返回继续编写.更新或者添加.该标签通常在注释块的源文件顶部. FIXME -该标签用来提醒你代码中存在稍后某个时间需要修改的 ...
- 【JAVA多线程问题之死锁】
一.死锁是什么? 举个例子:两个人一起吃饭,每个人都拿了一只筷子,双方都在等待对方将筷子让给自己,结果两个人都吃不了饭.这种情况和计算机中的死锁情况很相似. 假设有两个线程,互相等待对方释放占有的锁, ...
- AspectFill VS. AspectFit
从去年10月进入公司,到现在差不多忙碌了3个月,期间几乎所有精力和时间都花在了公司的项目上,有很多工作学习的心得一直没有总结,趁周末无事就来使这写一写. 除了刚进公司的那一个月是做一些修修补补的工作, ...
- hdu 4045 2011北京赛区网络赛F 组合数+斯特林数 ***
插板法基础知识 斯特林数见百科 #include<iostream> #include<cmath> #include<cstdio> #include<cs ...
- ARM伪指令,王明学learn
ARM伪指令 在ARM汇编语言程序中里,有一些特殊指令助记符与指令系统的助记符不同,没有相对应的操作码,通常称这些特殊指令助记符为伪指令,他们所完成的操作称为伪操作.伪指令在元程序中的作用是为完成汇编 ...
- ARM指令学习,王明学learn
ARM指令学习 一.算数和逻辑指令 1— MOV 数据传送指令 2.— MVN 数据取反传送指令 3.— CMP 比较指令 4.— CMN 反值比较指令 5.— TST 位测试 ...
- vector的主要操作
vector常用方法 assign() 对Vector中的元素赋值 void assign( input_iterator start, input_iterator end ); // void a ...
- VIM学习笔记
参考: http://linux.chinaunix.net/techdoc/beginner/2009/12/20/1150108.shtml VIM命令大全 光标控制命令 命令 ...
- Codeforces Beta Round #77 (Div. 1 Only) C. Volleyball (最短路)
题目链接:http://codeforces.com/contest/95/problem/C 思路:首先dijkstra预处理出每个顶点到其他顶点的最短距离,然后如果该出租车到某个顶点的距离小于等于 ...
- 如何在Ubuntu中让mongo远程可连接
最近团队的一个成员由于项目原因需要在vps上建立mongo数据库服务器并允许远端访问,这里整理下设置的思路 首先需要安装mongo apt-get updateapt-get install mong ...