此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。

PDF格式教材下载 Sequences and Series

本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution

Summary

  • If $$\sum_{n=1}^\infty |a_n|$$ converges (i.e. absolutely convergent), then $$\sum_{n=1}^\infty a_n$$ converges (i.e. conditionally convergent).
  • Suppose that $(a_n)$ is a decreasing sequence of positive numbers and $$\lim_{n\to\infty}a_n=0$$ Then the alternating series $$\sum_{n=1}^\infty (-1)^{n+1} a_n$$ converges.
  • For an alternating series $$s_n=\sum_{n=1}^{\infty}(-1)^n\cdot a_n$$ the test steps:
    • If $$\lim_{n\to\infty}a_n\neq0$$ then it diverges;
    • If $$\lim_{n\to\infty}a_n=0$$ and $a_n$ converges, then it absolutely converges;
    • If $$\lim_{n\to\infty}a_n=0$$ and $a_n$ diverges, then it conditionally converges.

Exercises 4.1

Determine whether each series converges absolutely, converges conditionally, or diverges.

1. $$\sum_{n=1}^\infty (-1)^{n-1}{1\over 2n^2+3n+5}$$ Solution: $$\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}{1\over 2n^2+3n+5} < \sum_{n=1}^{\infty}{1\over 2n^2}\to\text{converge}$$ Thus it converges absolutely.

2. $$\sum_{n=1}^\infty (-1)^{n-1}{3n^2+4\over 2n^2+3n+5}$$ Solution: $$\lim_{n\to\infty}|a_n|=\lim_{n\to\infty}{3n^2+4 \over 2n^2+3n+5}={3\over2}\neq0$$ Thus it diverges.

3. $$\sum_{n=1}^\infty (-1)^{n-1}{\ln n\over n}$$ Solution: $$\lim_{n\to\infty}{\ln n\over n}=0$$ and $${\ln n\over n} > {1\over n}\to\text{diverge}$$ Thus it converges conditionally.

4. $$\sum_{n=1}^\infty (-1)^{n-1} {\ln n\over n^3}$$ Solution: $$\lim_{n\to\infty}{\ln n\over n^3}=0$$ and $${\ln n\over n^3} < {n\over n^3}={1\over n^2}\to\text{converge}$$ Thus it converges absolutely.

5. $$\sum_{n=2}^\infty (-1)^n{1\over \ln n}$$ Solution: $$\lim_{n\to\infty}{1\over\ln n}=0$$ and $${1\over\ln n} > {1\over n}\to\text{diverge}$$ Thus it converges conditionally.

6. $$\sum_{n=0}^\infty (-1)^{n} {3^n\over 2^n+5^n}$$ Solution: $$\lim_{n\to\infty}{3^n\over 2^n+5^n}=0$$ and $$\lim_{n\to\infty}a_{n+1}/a_n=\lim_{n\to\infty}{3^{n+1}\over 2^{n+1}+5^{n+1}}\cdot{2^n+5^n\over 3^n}$$ $$=\lim_{n\to\infty}{3\cdot(2^n+5^n)\over 2^{n+1}+5^{n+1}}={3\over5} < 1$$ Thus it converges absolutely.

7. $$\sum_{n=0}^\infty (-1)^{n} {3^n\over 2^n+3^n}$$ Solution: $$\lim_{n\to\infty}{3^n\over 2^n+3^n}=1\neq0$$ Thus it diverges.

8. $$\sum_{n=1}^\infty (-1)^{n-1} {\arctan n\over n}$$ Solution: $$\lim_{n\to\infty}{\arctan n\over n}=\lim_{n\to\infty}{1\over 1+n^2}=0$$ and $${\arctan n\over n} > {1\over n}\to\text{diverge}$$ Thus it converges conditionally.

Exercises 4.2

Determine whether the following series converge or diverge.

1. $$\sum_{n=1}^\infty {(-1)^{n+1}\over 2n+5}$$ Solution: $$\lim_{n\to\infty}{1\over 2n+5}=0$$ Thus it converges.

2. $$\sum_{n=4}^\infty {(-1)^{n+1}\over \sqrt{n-3}}$$ Solution: $$\lim_{n\to\infty}{1\over \sqrt{n-3}}=0$$ Thus it converges.

3. $$\sum_{n=1}^\infty (-1)^{n+1}{n\over 3n-2}$$ Solution: $$\lim_{n\to\infty}{n\over 3n-2}={1\over3}\neq0$$ Thus it diverges.

4. $$\sum_{n=1}^\infty (-1)^{n+1}{\ln n\over n}$$ Solution: $$\lim_{n\to\infty}{\ln n\over n}=0$$ Thus it converges.

5. Approximate $$\sum_{n=1}^\infty (-1)^{n+1}{1\over n^3}$$ to two decimal places.Solution: $$\int_{N}^{\infty}{1\over x^3}dx= -{1\over2}\cdot{1\over x^2}\Big|_{N}^{\infty}= {1\over2}\cdot{1\over N^2} < {1\over100}\Rightarrow N \geq 8$$ Adding up the first 8 terms and the result is $0.9007447\doteq0.90$.

6. Approximate $$\sum_{n=1}^\infty (-1)^{n+1}{1\over n^4}$$ to two decimal places.Solution: $$\int_{N}^{\infty}{1\over x ^4}dx=-{1\over3}\cdot{1\over x^3}\Big|_{N}^{\infty}={1\over3}\cdot{1\over N^3} < {1\over100}\Rightarrow N\geq4$$ Adding up the first 4 term and the result is $0.9459394\doteq0.95$.

Additional Exercises

1. Suppose $$\sum_{n=1}^{\infty}|a_n|$$ converges, what about $$\sum_{n=1}^{\infty}a_n$$ Solution: $$\sum_{n=1}^{\infty}|a_n|\ \text{converges}$$ $$\Rightarrow\sum_{n=1}^{\infty}2\cdot|a_n|\ \text{converges}$$ We have $$0\leq a_n+|a_n|\leq2\cdot|a_n|$$ By comparison test, $$\sum_{n=1}^{\infty}(a_n+|a_n|)$$ converges. And $$\sum_{n=1}^{\infty}(a_n+|a_n|)-\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}a_n$$ converges.

This exercise shows that "Absolutely converge implies converge".

2. $$\sum_{j=5}^{\infty}{2j^2+j+2 \over 3j^5+j^4+5j^3+6}$$ converge or diverge?

Solution: $${2j^2+j+2 \over 3j^5+j^4+5j^3+6} < {3i^2\over3j^5}={1\over j^3}\to\text{converge}$$ By $p$-series test and comparison test, it converges.

3. $$\sum_{n=2}^{\infty}{6\cdot(-1)^n \over 7n^{0.52}}$$ converge or diverge?

Solution: $$\lim_{n\to\infty}{6\over 7n^{0.52}}=0$$ and $${6\over 7n^{0.52}} > {1\over 7n^{0.52}}\to\text{diverge}$$ Thus it converges conditionally.

4. $$\sum_{n=7}^{\infty}{4\cdot(-1)^{n+1}\over n^2+3n+5}$$ converge or diverge?

Solution: $$\lim_{n\to\infty}{4\over n^2+3n+5}=0$$ and $${4\over n^2+3n+5} < {4\over n^2}\to\text{converge}$$ Thus it converges absolutely.

MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series的更多相关文章

  1. MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  2. MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  3. MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  4. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  5. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  6. MOOCULUS微积分-2: 数列与级数学习笔记 2. Series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 1. Sequences

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. python学习笔记—DataFrame和Series的排序

    更多大数据分析.建模等内容请关注公众号<bigdatamodeling> ################################### 排序 ################## ...

  9. 《Java学习笔记(第8版)》学习指导

    <Java学习笔记(第8版)>学习指导 目录 图书简况 学习指导 第一章 Java平台概论 第二章 从JDK到IDE 第三章 基础语法 第四章 认识对象 第五章 对象封装 第六章 继承与多 ...

随机推荐

  1. 2014-10-28——iframe多层嵌套时获取元素总结

    同域: 父页面获取子页面元素: 注意:onload事件 jQuery获取:$("iframe").contents().find("holder")...... ...

  2. centos6-honeyd安装&配置

    安装 需要装 libpcap libevent libdnet 等(!) 有些用的yum,有些下载的安装包手动安装 (wget tar configure make install 非常linux) ...

  3. rotate 3d基础

    基础 看了岑安大大的教程学习了3d基础,之前写了篇总结,觉得写的太散废话太多,重写一篇. 本文需要实现的效果如下:3d球 岑安的两篇教程写的很棒,但我感觉改变下顺序或许会更好理解. 我们把画布(此文所 ...

  4. (译文)MVC通用仓储类

    Generic Repository Pattern MVC Generic Repository Pattern MVC 原文链接:http://www.codeproject.com/Articl ...

  5. 用js转换joson返回数据库的时间格式为/Date(*************)/

    原理是取中间的毫秒数,再转换成js的Date类型 function ChangeDateFormat(val) { if (val != null) { var date = new Date(par ...

  6. 当在XP系统上无法安装Mysql ODBC时,怎么办?

    system32下面缺失如下连接中的dll http://www.33lc.com/soft/19950.html 这个dll名为: msvcr100.dll 本来安装过程中会出现Error 1918 ...

  7. 网页之间信息传递方式(Cookie,Session)

    1.使用header()函数的重定向方式实现网页跳转.   EXE:header("Location: http://www.example.com/");   2.URL的GET ...

  8. ClassLoader 详解及用途

    ClassLoader主要对类的请求提供服务,当JVM需要某类时,它根据名称向ClassLoader要求这个类,然后由ClassLoader返回这个类的class对象. 1.1 几个相关概念Class ...

  9. 思维导图分享以及MindManager使用说明

    来源于: http://www.cnblogs.com/muhongxing/archive/2009/12/22/1628782.html http://www.cnblogs.com/muhong ...

  10. android时区

    <timezones>    <timezone id="Pacific/Majuro">马朱罗</timezone>    <timez ...