COGS103&tyvj1899 [NOIP2002]矩形覆盖
题目里给的范围是k<=4,但是官方数据并没有k==4的情况,导致一些奇奇怪怪的DP写法也能过。听说标程在k==4的时候有反例,掀桌….. 难怪COGS上k==4的数据答案是错的。
还是好好写个搜索吧:网上写法很多.我是每次沿着一条平行于坐标轴的直线将点集分割成两部分,并枚举k个矩形如何在两边分配。边界为k==1,扫一遍所有点找到最小的矩形。细节看代码吧.
但是这个搜索我也不能保证是对的,因为k==4有可能出现这种崎岖的最优方案:不存在一条平行于坐标轴且不和任何一个矩形相交的直线将4个矩形分成两部分.例如这样的最优方案:

贴个代码吧:递归的时候为了处理“将点集分成两部分”调了一堆memcpy….好在递归层数和点数都不多,不然常数炸天....
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=;
int x[maxn],y[maxn],seq[maxn];
inline int max(int a,int b){
return a>b?a:b;
}
inline int min(int a,int b){
return a<b?a:b;
}
bool cmp1(const int &a,const int &b){
return x[a]<x[b];
}
bool cmp2(const int &a,const int &b){
return y[a]<y[b];
}
struct node{
int x1,y1,x2,y2;
node(){}
node(int a,int b,int c,int d){
x1=a;y1=b;x2=c;y2=d;
}
}sol[];int cnt=;
int work(int l,int r,int seq[]){
int minx=0x7f7f7f7f,miny=0x7f7f7f7f,maxx=,maxy=;
for(int i=l;i<=r;++i){//printf("seq%d\n",seq[i]);
minx=min(minx,x[seq[i]]);maxx=max(maxx,x[seq[i]]);
miny=min(miny,y[seq[i]]);maxy=max(maxy,y[seq[i]]);
}
sol[++cnt]=node(minx,miny,maxx,maxy);
return (maxx-minx)*(maxy-miny);
}
int s[][];int tot=;
int dfs(int l,int r,int k,int seq[]){//printf("%d\n",k);
if(k==){
int tmp=work(l,r,seq);
cnt--;
return tmp;
}else{
int ans=0x7f7f7f7f;
sort(seq+l,seq+r+,cmp1);
for(int i=l;i<r;++i){
for(int j=;j<k;++j){
++tot;
memcpy(s[tot],seq,sizeof(int)*);
++tot;
memcpy(s[tot],seq,sizeof(int)*);
if(x[seq[i]]!=x[seq[i+]]){
int tmp=dfs(l,i,j,s[tot-])+dfs(i+,r,k-j,s[tot]);
ans=min(ans,tmp);
}
--tot;--tot;
//printf("---------------\n");
}
}//printf("%d\n",ans);
sort(seq+l,seq+r+,cmp2);
for(int i=l;i<r;++i){
for(int j=;j<k;++j){
++tot;
memcpy(s[tot],seq,sizeof(int)*);
++tot;
memcpy(s[tot],seq,sizeof(int)*);
if(y[seq[i]]!=y[seq[i+]]){
int tmp=dfs(l,i,j,s[tot-])+dfs(i+,r,k-j,s[tot]);
ans=min(ans,tmp);
}
--tot;--tot;
//printf("---------------\n");
}
}//printf("%d\n",ans);
return ans;
}
}
int main(){
int n,k;
scanf("%d%d",&n,&k);
for(int i=;i<=n;++i){
scanf("%d%d",x+i,y+i);
}
for(int i=;i<=n;++i){
seq[i]=i;
}
printf("%d\n",dfs(,n,k,seq));
return ;
}
COGS103&tyvj1899 [NOIP2002]矩形覆盖的更多相关文章
- [LuoguP1034][Noip2002] 矩形覆盖
[LuoguP1034][Noip2002] 矩形覆盖(Link) 在平面上有\(N\)个点,\(N\)不超过五十, 要求将这\(N\)个点用\(K\)个矩形覆盖,\(k\)不超过\(4\),要求最小 ...
- NOIP2002矩形覆盖[几何DFS]
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- NOIP2002 矩形覆盖
题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2), ...
- 洛谷1034 NOIP2002 矩形覆盖
问题描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7). 这些点可以 ...
- 【OpenJudge 1793】矩形覆盖
http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- UVA-11983-Weird Advertisement(线段树+扫描线)[求矩形覆盖K次以上的面积]
题意: 求矩形覆盖K次以上的面积 分析: k很小,可以开K颗线段树,用sum[rt][i]来保存覆盖i次的区间和,K次以上全算K次 // File Name: 11983.cpp // Author: ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
随机推荐
- jboss EAP 6.2 + Message Drive Bean(MDB) 整合IBM Webshpere MQ 7.5
上一篇我们知道了消息驱动Bean的基本用法,实际大型分布式企业应用中,往往会采用高性能的商业Queue产品,比如IBM Webshpere MQ(目前最新版本是7.5 ),下面讲解下如何在Jboss ...
- Java 生成 UUID
1.UUID 简介 UUID含义是通用唯一识别码 (Universally Unique Identifier),这是一个软件建构的标准,也是被开源软件基金会 (Open Software Found ...
- 产品列表页分类筛选、排序的算法实现(PHP)
一.简单的单条件查询 工作都是从简单的开始,先从最简单的单表查询开始,这个一般用在首页以及一些比较独立的页面,只需要查找几个符合条件的产品展示出来即可,可以使用分页或者不使用分页.下面这个是产品控制器 ...
- DOM 元素节点几何量与滚动几何量
当在 Web 浏览器中查看 HTML 文档时,DOM 节点被解析,并被渲染成盒模型(如下图),有时我们需要知道一些信息,比如盒模型的大小,盒模型在浏览器中的位置等等,本文我们就来详细了解下元素节点的几 ...
- 高性能JavaScript 重排与重绘
先回顾下前文高性能JavaScript DOM编程,主要提了两点优化,一是尽量减少DOM的访问,而把运算放在ECMAScript这一端,二是尽量缓存局部变量,比如length等等,最后介绍了两个新的A ...
- WinObjc - 使用iOS项目生成通用Windows应用
Github上一周年的WinObjc项目最近发布了预览版本,终于等到了这一天.WinObjc项目就是Build 2015大会上微软宣布的Project IslandWood项目,致力于将iOS应用快速 ...
- 浅谈JS继承
今天呢,我们来谈谈继承,它也是JS语言中的一大重点,一般什么时候我们会用继承呢,比如有两个拖拽的面板,两个功能基本一致,只是第二个面板多了一些不同的东西,这个时候,我们就会希望,要是第二个直接能继承第 ...
- ASP.NET的编译原理
http://www.cnblogs.com/mdy2001212/archive/2008/01/31/1060345.html
- APP架子迁移指南(三)
在完成上一篇之后,断断续续的开始重构我的Android项目代码,现在终于完成了.在重构期间又仔细阅读了一些开源项目的源码及文章,并询问了一些大神思路,按照理解自己完成了MVP结构的重构,与google ...
- NPOI2.0学习(一)
引用空间 using NPOI.HSSF.UserModel; using NPOI.SS.UserModel; 创建工作簿(workbook)和sheet HSSFWorkbook wk = new ...