bzoj 3573: [Hnoi2014]米特运输
3573: [Hnoi2014]米特运输
Description
米特是D星球上一种非常神秘的物质,蕴含着巨大的能量。在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题。
D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都。这N个城市由N-1条单向高速通道连接起来,构成一棵以1号城市(首部)为根的树,高速通道的方向由树中的儿子指向父亲。树按深度分层:根结点深度为0,属于第1层;根结点的子节点深度为1,属于第2层;依此类推,深度为i的结点属于第i+l层。
建好高速通道之后,D星人开始考虑如何具体地储存和传输米特资源。由于发展程度不同,每个城市储存米特的能力不尽相同,其中第i个城市建有一个容量为A[i]的米特储存器。这个米特储存器除了具有储存的功能,还具有自动收集米特的能力。如果到了晚上六点,有某个储
存器处于未满的状态,它就会自动收集大气中蕴含的米特能源,在早上六点之前就能收集满;但是,只有在储存器完全空的状态下启动自动收集程序才是安全的,未满而又非空时启动可能有安全隐患。早上六点到七点间,根节点城市(1号城市)会将其储存器里的米特消耗殆尽。
根节点不会自动搜集米特,它只接受子节点传输来的米特。早上七点,城市之间启动米特传输过程,传输过程逐层递进:先是第2层节点城市向第1层(根节点城市,即1号城市)传输,直到第1层的储存器满或第2层的储存器全为空;然后是第3层向第2层传输,直到对于第2层的每个节点,其储存器满或其予节点(位于第3层)的储存器全为空;依此类推,直到最后一层传输完成。传输过程一定会在晚上六点前完成。
由于技术原因,运输方案需要满足以下条件:
(1)不能让某个储存器到了晚上六点传输结束时还处于非空但又未满的状态,这个时候储存器仍然会启动自动收集米特的程序,而给已经储存有米特的储存器启动收集程序可能导致危险,也就是说要让储存器到了晚上六点时要么空要么满;
(2)关于首都——即1号城市的特殊情况, 每天早上六点到七点间1号城市中的米特储存器里的米特会自动被消耗殆尽,即运输方案不需要考虑首都的米特怎么运走;
(3)除了1号城市,每个节点必须在其子节点城市向它运输米特之前将这座城市的米特储存器中原本存有的米特全部运出去给父节点,不允许储存器中残存的米特与外来的米特发生混合;
(4)运向某一个城市的若干个来源的米特数量必须完全相同,不然,这些来源不同的米特按不同比例混合之后可能发生危险。
现在D星人已经建立好高速通道,每个城市也有了一定储存容量的米特储存器。为了满足上面的限制条件,可能需要重建一些城市中的米特储存器。你可以,也只能,将某一座城市(包括首都)中屎来存在的米特储存器摧毁,再新建一座任意容量的新的米特储存器,其容量可以是小数(在输入数据中,储存器原始容量是正整数,但重建后可以是小数),不能是负数或零,使得需要被重建的米特储存器的数目尽量少。
Input
第一行是一个正整数N,表示城市的数目。
接下来N行,每行一个正整数,其中的第i行表示第i个城市原来存在的米特储存器的容量。
再接下来是N-I行,每行两个正整数a,b表示城市b到城市a有一条高速通道(a≠b)。
Output
输出文件仅包含一行,一个整数,表示最少的被重建(即修改储存器容量)的米特储存器的数目。
Sample Input
5
4
3
2
I
12
13
24
25
Sample Output
【样例解释】
一个最优解是将A[1]改成8,A[3]改成4,A[5]改成2。这样,2和3运给1的量相等,4和5运
给2的量相等,且每天晚上六点的时候,1,2满,3,4,5空,满足所有限制条件。
对于100%的数据满足N<500000,A[j]<10^8
题解:
附题意:
给定一棵树和每个点的权值,问最少改动多少个点的权值使得:
1.每个点的所有儿子权值相等
2.每个点的权值等于所有儿子权值和
——————————————————
还是很巧妙的,注意到一旦确定根的权值,所有的点都确定了,但是枚举根太慢了。。。
改变思路,发现树中某个点的权值不变,那么根的权值也是确定的,所以把这些都算出来
ans=n-众数出现次数。
由于最后根的大小会爆long long,所以可以log一下。
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<algorithm>
using namespace std;
const int N=500005;
#define eps 1e-7
int n,i,x,y,ans,k,a[N],r[N];
double s[N];
int tot,head[N],to[N<<1],Next[N<<1];
inline void read(int &v){
char ch,fu=0;
for(ch='*'; (ch<'0'||ch>'9')&&ch!='-'; ch=getchar());
if(ch=='-') fu=1, ch=getchar();
for(v=0; ch>='0'&&ch<='9'; ch=getchar()) v=v*10+ch-'0';
if(fu) v=-v;
}
void add(int x,int y)
{
to[tot]=y;
Next[tot]=head[x];
head[x]=tot++;
}
inline void dfs(int x,int pre)
{
for(int i=head[x];i!=-1;i=Next[i])
if(to[i]!=pre)
{
s[to[i]]=s[x]+log((double)r[x]);
dfs(to[i],x);
}
}
int main()
{
read(n);
for(i=1;i<=n;i++) head[i]=-1;
for(i=1;i<=n;i++) read(a[i]);
for(i=1;i<n;i++)
{
read(x),read(y);
add(x,y);
add(y,x);
r[x]++;r[y]++;
}
for(i=2;i<=n;i++) r[i]--;
dfs(1,0);
for(i=1;i<=n;i++) s[i]+=log((double)a[i]);
sort(s+1,s+n+1);
k=1;ans=0;
for(i=2;i<=n;i++)
if(s[i]-s[i-1]<eps) k++;else ans=max(ans,k),k=1;
ans=max(ans,k);
cout<<n-ans;
return 0;
}
bzoj 3573: [Hnoi2014]米特运输的更多相关文章
- bzoj 3573: [Hnoi2014]米特运输【树形dp+瞎搞】
阅读理解题,题意是以1为根的有根树,每个点有点权,求修改最少点权能使每个点的权值等于其所有子节点权值之和并且每个点的所有子节点权值相等的个数 然后就比较简单了,就是有个技巧是数太大,需要对所有操作都取 ...
- 3573: [Hnoi2014]米特运输 - BZOJ
Description米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. D星上有N个城市,我们将其顺序编号为1到N,1号 ...
- 【BZOJ】3573: [Hnoi2014]米特运输
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3573 屁话一堆,就是说: 1.一棵树中的每个点的每个儿子的权值之和要等于这个点的权值 2. ...
- BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash
BZOJ_3573_[Hnoi2014]米特运输_树形DP+hash 题意: 给你一棵树每个点有一个权值,要求修改最少的权值,使得每个节点的权值等于其儿子的权值和且儿子的权值都相等. 分析: 首先我们 ...
- 洛谷 P3237 [HNOI2014]米特运输 解题报告
P3237 [HNOI2014]米特运输 题目描述 米特是\(D\)星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. \(D\)星上有 ...
- Luogu 3237 [HNOI2014]米特运输
BZOJ 3573 发现当一个点的权值确定了,整棵树的权值也会随之确定,这个确定关系表现在根结点的总权值上,如果一个点$x$的权值为$v$,那么一步步向上跳后,到根节点的权值就会变成$x*$每一个点的 ...
- 【bzoj3573】[HNOI2014]米特运输
题目描述 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都.这N个城 ...
- BZOJ3573:[HNOI2014]米特运输(树形DP)
Description 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储 存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市 ...
- 【bzoj3573】[HNOI2014]米特运输 树形dp
题目描述 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都.这N个城 ...
随机推荐
- 学习Python函数笔记之二(内置函数)
---恢复内容开始--- 1.内置函数:取绝对值函数abs() 2.内置函数:取最大值max(),取最小值min() 3.内置函数:len()是获取序列的长度 4.内置函数:divmod(x,y),返 ...
- 【Windows使用笔记】神舟笔记本的control center
首先,神船大法好. 然后,因为我的船风扇声音有点大啊,在实验室感觉就很吵,但是它的背板温度又不是很高,所以想设置下风扇的启动. 所以需要用到神船自带的control center软件. 长这样. 应该 ...
- cordova 从xcode7迁移到xcode8
环境以开发流程 当前项目使用的cordova环境 cordova 6.1.1 cordova-ios 3.9.2(vs15自动装的不知道在哪能改,所以考虑升级到vs17,能够手动指定) cordova ...
- Linux命令参数处理 shell脚本函数getopts
getopts 命令 用途 处理命令行参数,并校验有效选项. 语法 getopts 选项字符串 名称 [ 参数 ...] 描述 getopts 的设计目标是在循环中运行,每次执行循环,getopts ...
- nio笔记
http://blog.csdn.net/z69183787/article/category/2191483此人的博客 首先你要知道阻塞和非阻塞的概念,阻塞体现在这个线程不能干别的了,只能在这里等着 ...
- xcode没有ios7的模拟器
xcode7 目前只支持 ios8盒和iOS9的模拟器如果是Yosemite系统,下载xcode7和xcode6.4,两个版本可以共存,然后再下载iOS7默契你如果是EI Caption系统,网上说E ...
- Native Apps、Web Apps
Native Apps 指的是远程程序,一般依托于操作系统,有很强的交互,是一个完整的App,可拓展性强,需要用户下载安装使用 优点: 打造完美的用户体验 性能稳定 操作速度快,上手流畅 访问本地资源 ...
- Qt 下载列表地址
每次下载Qt总是找好长时间,收藏一下地址 Qt 下载列表地址 https://www.qt.io/download-open-source/#section-9 教育网镜像下载 http://mirr ...
- ubuntu sublime text 3 集成 nodejs 插件
下载nodejs插件地址:https://github.com/tanepiper/SublimeText-Nodejs 解压重命名文件夹为Nodejs打开sublime text : prefere ...
- Mybatis处理列名—字段名映射— 驼峰式命名映射
规范命名,数据库字段名使用 : 下划线命名(user_id) 类属性使用 : 驼峰命名(userId) 配置mybatis 时,全局设置: <settings> <!-- 开启驼峰, ...