2017ACM暑期多校联合训练 - Team 3 1005 RXD and dividing
Problem Description
RXD has a tree T, with the size of n. Each edge has a cost.
Define f(S) as the the cost of the minimal Steiner Tree of the set S on tree T.
he wants to divide 2,3,4,5,6,…n into k parts S1,S2,S3,…Sk,
where ⋃Si={2,3,…,n} and for all different i,j , we can conclude that Si⋂Sj=∅.
Then he calulates res=∑ki=1f({1}⋃Si).
He wants to maximize the res.
1≤k≤n≤106
the cost of each edge∈[1,105]
Si might be empty.
f(S) means that you need to choose a couple of edges on the tree to make all the points in S connected, and you need to minimize the sum of the cost of these edges. f(S) is equal to the minimal cost
Input
There are several test cases, please keep reading until EOF.
For each test case, the first line consists of 2 integer n,k, which means the number of the tree nodes , and k means the number of parts.
The next n−1 lines consists of 2 integers, a,b,c, means a tree edge (a,b) with cost c.
It is guaranteed that the edges would form a tree.
There are 4 big test cases and 50 small test cases.
small test case means n≤100.
Output
For each test case, output an integer, which means the answer.
Sample Input
5 4
1 2 3
2 3 4
2 4 5
2 5 6
Sample Output
27
题意:
有n个点,其中1为起点,其余的n-1个点(2~n)为我们要到达的点,将剩余的这n-1个点分成k个集合,看一下到这些点的路径的长度。
分析:
最开始做题的时候题意就理解错了,以为只要这k个集合的每个集合都有路径能达到求其中的一条路径就行。后来才知道这样的想法是错误的。
题目让我们求得是从源点1到2~n所有点的距离之和,这是一道关于最小斯坦纳树的问题,斯坦纳树问题的模型就是,比如:
有A,B,C三个村庄,现在要建立一个发电站,要求到这三个村庄的距离和最短,这个问题我们应该都接触过很多次,这就是最原始的斯坦纳树的问题。
现在回归这道题,题上要求我们把2~n这些点分成k部分,那么对于一个节点以及它所有的子节点来说,这一部分最多也只能够被分成k部分,很多人不太理解这一点,我详细解释一下这里的原因。
我们在求1到任意点的路径的时候,如果这个点可以通过以他在同一个集合中的点到达的话,我们就可以直接通过它的父节点到达这个点,而不必要在绕道最开始的节点1.
但是如果一个节点的父节点与它不在同一个集合中,我们要求1到这个节点的距离,就必须从1开始加。
既然让求距离的最大值,那么我们就可以尽可能的把一个节点连带他的所有的子节点分到不同的集合中,这样它前面走过的那一部分才可以近可能的多走几次。但是我们分的集合数肯定不能超过要求分的k部分和节点大小的较小值。
很多人在意到底应该将那一部分分到一个集合里面,其实这个完全没有必要关心,因为不管集合如何分,它们走的路径长度最后都是一样的,这个可以自己画图体会一下。
即一条边(u,father(u))对整个的贡献就相当于这条边的value值乘上k,与size[x](当前情况下x的子节点个数,包括它本身)中的较小者,我们只要遍历所有的边,然后将每条边的值都算出来,最后求和。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+7;
int head[N],nxt[N*2],v[N*2],w[N*2],sz[N];
int n,k,g[N],ed;
long long ans;
inline void adg(int x,int y,int z)///头插法
{
v[++ed]=y;///v表示的是终点
w[ed]=z;///w表示的是这条边的权重
nxt[ed]=head[x];///xt表示的是钱一条边
head[x]=ed;///头的指向改变
}
void dfs(int x,int fa,int val)
{
sz[x]=1;
for(int i=head[x]; i!=0; i=nxt[i])
if(v[i]!=fa)///不是又找到本身这条边了
{
dfs(v[i],x,w[i]);
sz[x]+=sz[v[i]];
// printf("x=%d sz[x]=%d val=%d\n",x,sz[x],val);
}
ans+=1ll*min(k,sz[x])*val;
//printf("ans==%lld\n",ans);
}
int main()
{
while(~scanf("%d%d",&n,&k))
{
for(int i=1; i<=n; i++)
head[i]=0;///每一个点的指向都赋初值
ed=0;
ans=0;
for(int i=1;i<n;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
adg(x,y,z),adg(y,x,z);
}
dfs(1,0,0);
printf("%lld\n",ans);
}
return 0;
}
2017ACM暑期多校联合训练 - Team 3 1005 RXD and dividing的更多相关文章
- 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)
题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...
- 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)
题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...
- 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)
题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...
- 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)
题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...
- 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)
题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...
- 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...
- 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)
题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...
- 2017ACM暑期多校联合训练 - Team 7 1009 HDU 6128 Inverse of sum (数学计算)
题目链接 Problem Description There are n nonnegative integers a1-n which are less than p. HazelFan wants ...
- 2017ACM暑期多校联合训练 - Team 7 1002 HDU 6121 Build a tree (深搜+思维)
题目链接 Problem Description HazelFan wants to build a rooted tree. The tree has n nodes labeled 0 to n− ...
随机推荐
- CDN问题
名称解释:正反向解析 主辅服务器 domain zone 记录:SOA.NS.A.CNAME.PRT.MX DNS配置文件中各字段作用,如TTL DNS端口号? TCP53和UDP53使用场合 Lin ...
- JavaScript数组去重的四种方法
今天,洗澡的想一个有趣的问题,使用js给数组去重,我想了四种方法,虽然今天的任务没有完成,5555: 不多说,po代码: //方法一:简单循环去重 Array.prototype.unique1 ...
- 这可能是目前最全的Redis高可用技术解决方案总结
本文主要针对 Redis 常见的几种使用方式及其优缺点展开分析. 一.常见使用方式 Redis 的几种常见使用方式包括: Redis 单副本: Redis 多副本(主从): Redis Sentine ...
- angular 数据内容有重复时不显示问题
<body ng-app="app"> <div ng-controller="myctl"> <ul> <li ng ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj2656】[Zjoi2012]数列(sequence) 高精度
题目描述 给出数列 $A$ 的递推公式如下图所示,$T$ 次给定 $n$ ,求 $A_n$ . 输入 输入文件第一行有且只有一个正整数T,表示测试数据的组数.第2-T+1行,每行一个非负整数N. 输出 ...
- Java Servlet异步处理、非阻塞I/O和文件上传
异步处理 应用服务器中的 web容器通常对各个客户端情求分别使用一个服务器线程.在工作负载很繁重的情况下,容器常要大量线程来为所有客户端请求服务.可扩展性限制包括内存用尽,或容器线程池耗尽.为了创建可 ...
- ubuntu16.04上安装配置DHCP服务的详细过程
DHCP服务器是为客户端机器分配IP地址的,所有分配的IP地址都保存在DHCP服务器的数据库中.为了在子网中实现DHCP分配IP地址,需要在目标主机上安装配置DHCP服务 1. 安装DHCP服务 安装 ...
- Golden Tiger Claw UVA - 11383(km原理)
这题使我对km多了一些看法 写给自己看.. km结束后bx[i] + by[j] == w[i][j], 所以所有bx与by的和即为w的和 而且记住bx[i] + by[j] >= w[i][j ...
- Linux 内核分析第八周学习笔记
Linux 内核分析第八周学习笔记 zl + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-10 ...